
Computer-aided Formal Specification to enable  
a fully automated 

Requirements-based Testing Process
Hans J. Holberg 

SVP Marketing & Sales, BTC Embedded Systems AG 
An der Schmiede 4, 26135 Oldenburg, Germany 

hans.j.holberg@btc-es.de

Dr. Udo Brockmeyer 
CEO, BTC Embedded Systems AG 

An der Schmiede 4, 26135 Oldenburg, Germany 
udo.brockmeyer@btc-es.de

Abstract: The requirement specification stands at the beginning of any
development process. It builds the basis for the further development of embedded
control devices. Their quality is of great importance for the progress and success of
each project. Especially in the area of safety critical development and the fulfillment
of industrial standards like IEC61508 and ISO26262 in respect to functional safety,
Formal requirement specification plays a major role. These are not very popular in
the area of embedded software development, in comparison to model-based
specification. Declarative methods, like formal requirement specifications, are
considered to be too mathematical and too difficult to learn in general; it is observed
as a method only for experts. Operational methods, like modeling, are widely
accepted as typical activities of engineers. Formal specifications have various
advantages in supporting a computer-aided fully automated requirement-based test
process, due to its machine-readability, unambiguousness and traceability
capabilities. This method presented here allows engineers, an intuitive and
constructive specification of formal requirements, without having in-depth expertise
in theory of Formal Methods. Starting point of the formalization process is the
informal textual requirement, which is structured step-by-step by the user, in order
to get a more and more unambiguous, machine-readable description. In the
beginning, no concrete architecture, model, code or even implementation is
mandatory. At later stages of the development process, the concrete architectures
can be bound by the users to the former developed “virtual” formal requirement
specification. This binding process always is accompanied by the wizard
mechanism and allows a convenient and efficient handling. This automatically
creates a linkage between the various artifacts of the development process. The
specification environment enables automatic structuring and management of the
corresponding links, which allows complete traceability throughout the entire
development process. An important part of the described specification environment
is the synthesis unit which automatically translates the formal specification into so
called C-Observers. These C-Code-Functions are representing the particular
requirements, which are executable as monitors/observers during the verification-
and test process in the specific test environment. This allows a complete
automated, requirement-based test approach, both at model level as well as at
code and implementation levels. Outcome of many pilot projects in the automotive
industry is the observation, that the necessary additional formalization effort can be
compensated quickly by the highly automated test process. Additionally, the
increased safety and quality level due to the higher precision and completeness of
the requirement representation as well as a maximum level of reusability of this
seamless methodology shows the advantage against conventional methods.

Field of Application

Modeling on the one hand has been established to improve the development
process of embedded software. On the other hand, the formalization of
requirements using formal methods still is a field for experts, while modeling is
widely used by typical software development engineers. What is the reason for
that? Modeling in an operational way seems to be very intuitive, especially if the
models can be simulated immediately. Such executable specification directly
shows the behavior of all combined target requirements, while any kind of formal
specification of requirements in a declarative way ends-up with a list of isolated
non-executable syntax constructs.
However, the quality of the requirement representation process plays an important
role to ensure high quality of the final product of the development process.For the
development of safety critical systems, clear, and unambiguous requirement
specifications are essential.
Also, to enable automatic requirements-based testing, a syntactical und
semantical sound specification, which is finally machine-readable, is necessary.
Therefore the challenge in practice is to enable typical engineers to write those
formal specifications in a safe and intuitive way.

The presented technology

 shall address this challenge by introducing a 1

computer-aided process accompanied requirement specification method, which
can be used from the very beginning of the development process. It starts with
text written in natural language and it ends up with a machine readable C-Code-
Observer description, which is used for automatic test and verification purposes. 

Computer-aided Formal Specification to enable 
a fully automated Requirements-based Testing

- ! - 2

� The presented approach has been realized in a first version as a requirement specification 1

environment called BTC EmbeddedSpecifier. It comes as a model and code independent tool
environment to enable formal specification in general, but is also smoothly integrated in the existing
BTC EmbeddedTester automatic testing tool-chain especially made for dSPACE TargetLink.

Computer-Aided Specification Approach

Quality Aspects
As the described method is currently mainly used in the automotive domain,
quality aspects can be assessed by using relevant safety standards. Here it is of
interest to have a look at the ISO 26262 standard [ISO], which is an adaptation
and extension of the currently functional safety standard IEC 61508 especially for
functional safety in automotive. In contrast to the IEC 61508 the ISO 26262 is
taking the model-based development process into account. ISO 26262 is defining
4 different levels of safety, so called Automotive Safety Integrity Levels (ASIL A,
ASIL B, ASIL C and ASIL D). Level A is the lowest and D the highest safety level.
Requirement specification plays a central role as basis for any verification
process.

ISO 26262 highly recommends the requirements-based testing for all
mentioned ASILs, but the higher the ASIL is taken into account, the more formal
notations have to be addressed:

ISO 26262 highly recommends (double plus) for all ASILs a specification of the
software design in "Natural Language" as a minimum. Additionally as a minimum
level of specification, any kind of "Informal Notation" shall be used. For an
"informal Notation" a well defined syntax is not necessarily mandatory, but it has
to be written down. A notation can be called "Semiformal" , if a syntax is defined
clearly, but the behavior interpretation can not be determined unambiguously.
"Formal Notation" requires a well defined syntax and semantics. This leads to a
specification, which can be translated into a "machine-readable" format, which
can be used for any further automatic analysis technology. These levels of
notations are used in the presented specification method to allow to introduce a
flexible step-by-step refinement methodology along the development process
stages. Another very important aspect taken from the ISO 26262 is the highly
recommended main principle: Traceability along the process.
All work products, which are developed and which are related to each-other shall
be traceable linked to each other. This main principle is taken as a general
foundation for the here presented specification method.  

Computer-aided Formal Specification to enable 
a fully automated Requirements-based Testing

- ! - 3

The Specification Method

The typical workflow of the presented requirements specification method is shown
in the following figure. It describes a step-by-step formalization process, while the
user specification becomes more and more structured and more concrete. It starts

with an informal requirement specification given in a natural language, and is
written-down in an informal way as a textual construct. In a next design step, the
user identifies relevant objects in the given text, which will be identified as "Macro
Specifications". These macros are used to identify any kind of events, conditions
and timing information of the requirement under specification. In order to continue
to structure the given textual requirement, the user can select the proper method
of "Structured Specification". The proper method directly depends on the nature
of the given requirement. Practice has shown, that not only one specification
method can be selected to cover the specification needs of different application
classes. For a huge set of automotive applications, like body electronics, power
train, motor control, transmission and chassis, predefined requirement structures
can be used to cover most of the mission and safety critical requirements. In the
presented approach, so called Pattern Specifications [PATTERN] are used.

Computer-aided Formal Specification to enable 
a fully automated Requirements-based Testing

- ! - 4

This approach provides a library of predefined patterns for specifying functional
and safety critical requirements. Patterns can be instantiated simply by filling the
pattern parameters with Boolean expressions ranging over architecture (e.g.
model or code) elements/variables. Along the typical workflow, instead of directly

addressing architecture / interface objects, the user can use the former defined
Macros in order to fill the pattern parameters with a semi-formal specification as
an intermediate specification step. Later on in the specification process, the user
can bind existing architecture/interface objects like model elements or code
variables to the macros to finalize the formal specification. During this
specification step, the complete traceability between the original text and the
architecture / interface element is guaranteed via the macro specification.
The pattern specification method guarantees an easy user entry in the formal
world, without having a deep mathematical and theoretical background. This
schematic pattern approach allows full certainty about what has been formally
specified, without any final doubt. In the future, the set of Structured
Specifications will be extended in order to cover an extended list of application
classes. Especially event driven requirements, which come in long sequences,
need another specification approach. Here Sequence Diagrams (SDs) or Life
Sequence Charts (LSCs) have been used successfully in several research
projects in the past [LSC].

This described method is following the so called assumption/commitment style,
which means, that not only the pure desired behavior (commitment) of a system
under verification/test is taken into account, but also the specific environmental
behavior (assumptions) can be specified by using the described structured
specification elements, like pattern and/or SDs/LSCs. One commitment
specification comes with as many assumption specifications as needed. The
following formula shall describe the mathematical relationship between the set of
Assumptions (A1 … An) and the commitment C, which shall be granted by the system
under verification/test:

A1 and A2 and … and An => C
Computer-aided Formal Specification to enable 
a fully automated Requirements-based Testing

- ! - 5

These connections between several assumption specifications and one
commitment specification will be joined together within "Contract
Specifications". These contracts finally represents a complete "Formal
Specification" of a requirement, if all macros have been bound to existing
architecture/interface objects of the system under verification/test. In a final fully
automatic step, "C-Code-Observers" can be generated from those contract
specifications in order be used for automatic verification and testing approaches.
Therefore, this specification layer is called "Machine Readable". The next figure
shows automatically generated commitment parts of C-Observers, which
represents the specified requirements, automatically connected to the system
under verification/test for an automatic testing approach [BTCEW2011] /

[BTCEW2010]. The assumptions of the contracts will be used to automatically
synthesize the Environmental part of the verification/test architecture which is
visualized in the figure above.
The specification elements in general can have three different modes:

• Informal

• Semi-formal

• Formal

Informal elements are generally linked to informal textual specifications. Semi-
formal elements are filled with symbolical references like macros. Formal
elements have to have a link to existing architecture/interface objects of an
executable design (e.g. functional or implementation model) or implementation
level (e.g. C-Code, Object Code, Hardware/Software integration etc.).
The specification method does not force the user to start the requirements
specification process at the very beginning of the shown workflow, like a bottom-
up approach. It give the full flexibility to enter this process at any point, e.g.
starting top-down with Pattern specification while an architecture binding has
been done immediately.
Computer-aided Formal Specification to enable 
a fully automated Requirements-based Testing

- ! - 6

Computer-Aided User Interaction

The described specification method is realized in a tool-suite which supports the
user during every specification stage. It automatically links the specification
elements together, in order to guarantee full traceability and support automatic re-
factoring activities. These two concepts allow firstly readability and secondly an
efficient workflow, with a maximum of automatism and reusability.
The following figure shows an extract of the tool-suite which allows the user to
work directly with an imported informal text specification to define Macros and
Pattern Specifications.

The text part, which represents a specification unit, simply can be selected by the
user in order to create new macros and structured specification objects like
pattern. The different specification objects are visualized as colorized text.
Additionally, hyperlinks are added to the requirement view to allow fast
specification access. This can be seen in the figure above on the "Requirements"
dialog tab. All specification objects are hierarchically managed an accessible via
"Profile Navigator"' as can be seen in the figure above on the left-hand side.
The next step of specification is the selection of the "Structured Specification"; this
also can be done by selecting the corresponding text phrase and by creating e.g.
a new pattern specification object. Following the created pattern link, the user can
specify a semi-formal pattern requirement object while referencing user defined
macros in the dialog tab "Patterns". Therefore a corresponding Pattern Template
is selected out of the Pattern Library. This selection is done by the user based on
the specific structure of the textual requirement. This process is accompanied by
a tool-wizard to ensure an intuitive easy formalization workflow. After selecting the
appropriate Pattern Template, the tool-suite shows the parameters (place holders)
of the pattern in a separated dialog tab. Here, the user can define the parameters
(P, Q etc.) simply by referencing Macros or Architecture/Interface objects, either
for a semi-formal or for a final formal specification. The following figure shows the
"Patterns" dialog tab. 

Computer-aided Formal Specification to enable 
a fully automated Requirements-based Testing

- ! - 7

Within the Patterns dialog, the user can select the desired level of formalization
under "Notation". If any concretization is missing to reach the selected level of
formalization, the tool-suite automatically identifies and visualizes the missing
details to help the user. The user uses these specification method to formalize
either commitments or assumptions. In the next interaction step if the
formalization workflow, contract can be specified. The identification of the
commitment and the set of assumptions can be done by simple drag-and-drop

activities in the Profile Navigator within the specification tree. The specification
result is presented to the user in the "Contracts" dialog tab (see figure above).
Before a machine-readable requirements specification can be derived as C-
Observers, a binding to an existing testing architecture/interface has to be
established. For this reason, the user can import such architectures into the tool-
suite. The binding between a semi-formal macro specification and the real
variable/signal world of an execution layer of a system under verification/test has
to be guided by the user once. For this, the user simply drags the desired

Computer-aided Formal Specification to enable 
a fully automated Requirements-based Testing

- ! - 8

specification object directly on the imported architecture. This is done on the
specification tree visualized in the Profile Navigator. The tool-suite then
automatically creates a new instance of such specification object, with the ability
to refine the semi-formal parts into formal parts based on the corresponding

architecture/interface objects. The figure above shows the imported architecture/
interface on the right-hand side. A binding between the current macro
specification, which links to an informal text, and the target test architecture can
be performed by writing the corresponding "Definition" based on the accessible
interface objects.
If the binding to the test architecture is done, C-Observer specifications for further
automatic testing approaches can be generated fully automatically.

The result can be seen in the figure above under the dialog tab "C-Observers".  
Computer-aided Formal Specification to enable 
a fully automated Requirements-based Testing

- ! - 9

Conclusion

The presented specification method enables the typical developer and/or tester of
embedded control software to specify requirements in a formal way, to fill the gab
between informal textual requirements and machine-readable specifications.
It provides a user-friendly way of requirements specification, which directly
addresses the automotive ISO 26262 standard for functional safety for all defined
Automotive Safety Integrity Levels (ASILs).
Due to the computer-aided way of specification refinements, and due to the
intuitive step-by-step way of structuring informal requirements, formal
specification methods becomes usable even for non-experts.
The automatic binding of existing testing architectures to the requirement
specifications makes this method a very effective and efficient approach to enable
automatic requirements-based testing. The key-technology here is the automatic
C-Code-Observer-Generation out of formal specifications, which builds the bridge
between the operational world (executable specifications) and the declarative
world (requirement statements).
The automatic linkage mechanism, which accompanies the user during all
specification stages, provides a lot of advantages, mainly complete traceability,
readability and the possibility of automatic refactoring, if details of specifications
will change over the life-cycle.
This described very flexible method can be used at any point in time during the
software development process, either from the very beginning based on textual
specifications, or directly on existing test execution stages, e.g. to test existing C-
Code implementations etc.
The presented approach has been realized in a first version as a requirement
specification environment called BTC EmbeddedSpecifier. It comes as a model
and code independent tool environment to enable formal specification in general,
but is also smoothly integrated in the existing BTC EmbeddedTester automatic
testing tool-chain especially made for dSPACE TargetLink.

Computer-aided Formal Specification to enable 
a fully automated Requirements-based Testing

- ! - 10

Bibliography

[ISO] Road vehicles – Functional Safety, International Organization

for Standardization, ISO 26262, 2011

[PATTERN] Pattern Specification - BTC EmbeddedTester Version 2.7 Tool
Documentation, BTC Embedded System AG, 2011

[LSC] LSCs: Breathing Life into Message Sequence Charts, Werner
Damm and David Harel, Formal Methods in System Design,
2001

[BTCEW2010] Fully Automated Back-to-Back Testing to support ISO 26262
Compliant Software Development, Hans Holberg and Dr.
Brockmeyer, Embedded World Conference 2010

[BTCEW2011] ISO 26262 compliant verification of functional requirements in
the model-based software development process, Hans Holberg
and Dr. Brockmeyer, Embedded World Conference 2011

Computer-aided Formal Specification to enable 
a fully automated Requirements-based Testing

- ! - 11

