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Abstract—The first part of this talk will present a method to 

perform an intuitive and constructive formal requirement 

specification. Starting point of the formalization process is the 

informal textual requirement, which is structured step-by-step by 

the user, in order to get a clear and unambiguous representation. 

A new specification method called Universal Patterns allows 

filling the gap between natural language and machine readable 

description, without being an expert in formal methods. This 

makes the formal world usable for engineers in the area of 

embedded software development and testing. While being very 

intuitive, Universal Patterns give full flexibility regarding 

expressiveness and parameterization. Additionally, a maximum 

of readability due to an on-the-fly graphical visualization is 

guaranteed by this method in order to give final clearness about 

the user specification. A  

Since the formalized requirements are machine-readable, 

they can afterwards dramatically improve the quality and 

efficiency within the test and verification process. The machine-

readable requirement observers are automatically generated 

form the universal pattern specification. They are used to 

monitor the system under test automatically regarding 

passed/failed status and requirement coverage rates. The second 

part of this talk will show how formal requirements can be 

smoothly integrated into different development and test 

environments. 

Finally in the conclusion of this talk, current experiences in 

the automotive industry in the area of functional safety (ISO 

26262, ASIL C+D) are presented and future improvements are 

outlined.  

 

Keywords—formal specification, formal verification, model 

checking, requirements-based test case generation 

 

 

I.  INTRODUCTION 

This paper consists of two main sections. The first part  
(Section II) will focus on the methodology of formal 
specification for safety requirements. The proposed method 
will allow to guide the user intuitively through the different 
steps of the process, starting with an informal requirement in 
textual form. While this pattern based approach is already 
proven in use in many production projects, this paper will also 
introduce two new aspects in this context. The first aspect 
proposes a different and more constructive approach to formal 
specification using so called “Universal Patterns”. The second 
aspect deals with the notion of requirements coverage and 
introduces a reasonable definition which can serve for coverage 
measurement purposes as well as for generating appropriate 
test cases for a requirement. Section II will conclude with the 
synthesis of requirement observers, which can be generated 
from the formal specification in order observe the behavior of a 
specific system-under test.  

Since a formal specification represents an unambiguous and 
machine readable representation of a requirement, it can serve 
as the basis for several highly automated tasks within the test 
and verification process. The second part of this paper (Section 
III) will focus on three use cases, from which the first will talk 
about automatic requirements-based test case generation, 
where functional test cases can be generated automatically in 
order to fulfill, and fully cover, a requirement. The second 
example is the so-called simulation-based formal verification, 
where any kind of test data can be checked against a 
requirement. The section will conclude with the topic of formal 
verification using model checking, where a mathematical proof 
can show that a system-under test can never violate specific 
requirement. 
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II. FORMAL SPECIFICATION OF SAFETY REQUIREMENTS 

A. The EmbeddedSpecifier Method 

The typical workflow of the presented requirements 

specification method is shown in Fig. 1. It describes a step-by-

step formalization process, while with each step the user 

specification becomes more and more structured and more 

formal. It starts with a “Textual Requirement” specification 

given typically in natural language, which is present as an 

“Informal Specification”. In the next design step (1), the user 

identifies relevant objects in the given text, which will be 

identified as a "Macro Definition". These macros are used to 

identify any kind of events, conditions and timing information 

of the requirement under specification. In order to continue to 

structure (2) the given “Textual Requirement”, the user can 

select a proper method for the "Structure Definition". The 

adequate method directly depends on the nature of the given 

requirement. Practice has shown that not only one specification 

method can be selected to cover the specification needs of 

different application classes. However, for a huge set of 

automotive applications, like body electronics, power train, 

motor control, transmission and chassis, simple trigger action 

schemes (let us call it “Patterns”), can be used to cover most of 

the mission and safety critical requirements. In the presented 

approach, so called “Universal Pattern Specifications” are used. 

This approach provides the ability to construct any kind of 

trigger/action relation for specifying functional and safety 

critical requirements. Patterns can be instantiated simply by 

filling the pattern parameters with Boolean expressions ranging 

over architecture (e.g. model or code) elements/variables, 

which can be imported (3) as an “Interface Description” from 

any source. Along the typical workflow, instead of directly 

addressing architecture / interface objects, the user can use the 

former defined Macros in order to fill the pattern parameters 

with a “Semi-formal specification” as an intermediate 

specification step. Later on in the specification process (4), the 

user can bind existing objects of the given “Interface 

Description” like model elements or code variables to the 

macros to finalize the “Formal Specification”. During this 

specification step, the complete traceability between the 

original text and the interface element is guaranteed via the 

macro specification. The pattern specification method 

guarantees an easy entry in the formal world, without having a 

deep mathematical and theoretical background. This schematic 

pattern approach allows full certainty about what has been 

formally specified, without any final doubt. In the near future, 

the set of Structured Specifications will be extended in order to 

cover an extended list of application classes. Especially event 

driven requirements, which come in long sequences, need 

another specification approach. Here Sequence Diagrams 

(SDs) or Life Sequence Charts (LSCs) have been used 

successfully in several research projects in the past. In a 

complete automated phase (5), a “Machine-readable 

specification” aka “Requirement Observer” (e.g. C-Code or 

Python etc.) can be generated for further formal verification 

activities. 

 

 

 

 

Fig. 1: Formalization process 

 

 

 

B. Universal Pattern 

 

The “Universal Pattern” structuring method allows the user 

to define simple and complex trigger action relations in a 

constructive and intuitive way. Fig. 2 shows a simple example 

where a single “Trigger” and a single “Action” relation have 

been defined. The relationship between the 2 events is defined 

by the user, based on different universal pattern 

“Interpretations”. 

 

 

 
 

 

Fig. 2: Example of a Universal Pattern definition 
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Three different “Interpretation” can be selected: 

 

 Progress (“implies eventually”) 

 Ordering (“only after”, “not before”) 

 Invariant (“always”) 

The example shown in Fig. 2 considers the following informal 

requirement of a car window controller: 

 

“If an obstacle is detected at least for 50 ms, the window down 

signal has to be activated for minimum time frame of 1 sec. “. 

 

After selecting the right “Interpretation” of the “Universal 

Pattern”, the user has to parametrize the “Trigger” and 

“Action” object regarding time duration and stable condition.  

For a “Semi-formal Specification”, 2 Macros are defined 

directly with a simple use interaction on the textual 

requirement: 

 

1. “[..] obstacle is detected […]”-> ObstacleDetected 

2. “[…] window down signal […]” -> WindowDown 

The Macro ObstacleDetected  becomes the “Trigger 

Condition” and the Macro WindowDown  is used to define the 

“Action Condition”. The timing definitions are defined 

directly with the specified time data: 50ms (Trigger 

Duration), 10ms (Scope Duration) and 1000ms (Action 

Duration) as real-time definitions. In order to reach the level 

of a “Formal Specification” the 2 Macros have to be bound to 

real “Interface Description” signals like “input”, “output”, 

“local” and “calibration” variables of the system under 

verification. If this level is reached, the syntax as well as the 

semantics of the requirement specification is clearly defined. 

 

C. Requirement Coverage 

 

Based on the universal pattern specification method, a new 

definition of requirement coverage has been identified and has 

been mathematically defined in order to allow the 

measurement of requirement coverage in complete automated 

way. This is important for different reasons. Especially quality 

standards like IEC 61508, ISO 26262 and DO 178c always 

reference the term requirement coverage as the final goal of 

testing, beside other structural coverage criteria like model or 

code coverage. Additionally, this term is very important to 

identify test goals for any kind of automatic test generation 

activities. Generally the definition of requirement coverage 

has been done upon the so called trigger/action relationship, 

which is the basis for the universal pattern approach. The main 

idea of requirement coverage is the ratio between the reached 

relevant trigger combinations (𝑇𝑟𝑖𝐶𝑜𝑚𝑏𝑟𝑒𝑎𝑐ℎ𝑒𝑑), which 

activate the corresponding action and all relevant trigger 

combinations (𝑇𝑟𝑖𝐶𝑜𝑚𝑏𝑎𝑙𝑙): 

𝑅𝑒𝑞𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑅𝑎𝑡𝑒 =
 𝑇𝑟𝑖𝐶𝑜𝑚𝑏𝑟𝑒𝑎𝑐ℎ𝑒𝑑

𝑇𝑟𝑖𝐶𝑜𝑚𝑏𝑎𝑙𝑙  % 

 

As other coverage criteria, requirement coverage comes in 

different levels of coverage according to the desired test 

quality level to be reached (the higher the level the higher the 

number of test sequences to be covered): 

 

 

 

 
Level 0: Asks for reaching some of the goals. One trace 

suffices which satisfies (or violates) the action. 

 

 

 
Level 1: Asks for reaching all goals. 

: 

 
Level 2: Asks for reaching all combinations of goals 

 

 
Level 3: Asks for reaching all time-depending  

combinations of goals: 

 

Fig. 3: Definition of levels for requirement coverage 

 

 

 

D. Requirement Observers 

 

After the user has specified requirements in a formal way, all 

semantical information is available to represent the property in 

a complete mathematical sense. This enables a complete 

automatic synthesis (generation) of so called requirement 

observers in an arbitrary computer language (e.g. c-code or 
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python). A requirement observer is defined over the name 

space of the interface of the system under verification, as the 

interface definition has been taken as one basis of the formal 

specification of the original requirement. This observer acts as 

a watch dog, which is part of the test harness of the system 

under verification to judge at any moment in time of 

execution, if the requirement is valid or not. In other words, it 

is an automatic verdict function of the system under 

verification in respect to the original specified requirement. 

 

 
Fig. 4: Usage of requirement observers 

 

 

The Figure above shows, that beside the verdict “Passed/Fail” 

analysis, the requirement observer additionally can calculate 

automatically the reached “Requirement Coverage” rates 

based on the defined coverage criterion definition. Even more, 

this requirement observers can be used for any Formal 

Verification activity or automatic test generation process, if 

the system under verification is parallel composed with the 

requirement observers. These use cases will be presented in 

more detail in the following section.  

 
 

III. USING FORMAL SPECIFICATIONS IN THE VERIFICATION 

PROCESS 

 

A. Automatic requirements-based test vector generation   

 
One of the most time consuming tasks in the testing and 

verification workflow is typically the creation of appropriate 
test cases, meaning to derive test cases from the textual 
requirements. These test cases are used on all levels along the 
v-cycle to show that a specific system-under-test correctly 
implements the corresponding requirements, from unit test on 
model- and code-level up the system tests and HIL testing. 
Such a test case, or test vector, typically consists of vectorised 
signals to be applied to the input variables of the system as well 
as a test verdict that allows to decide if the requirement is 
violated or not. But the manual analysis of textual requirements 
followed by the manual creation of test vectors is not only time 
consuming, it can also be error prone due to the interpretation 
of the requirement performed by the “human” engineer and 
depending on the quality and clarity of the requirements. In 
addition, textual requirements and manually created test 
vectors always lead to the question if a requirement has been 

completely tested and how many test cases are actually needed 
to completely cover a requirement.  

In case a requirement has been formalized, these issues can 
be addressed quite efficiently in an automated way. As the 
formalized requirements are machine readable, automated 
analysis methods such as model checking can be used, to 
produce requirements-based test vectors automatically. For 
these vectors the notion of “requirements coverage” that has 
been introduced before also allows to make sure, that the 
requirements are completely covered.   

While theoretically a complete set of formalized 
requirements for a system is sufficient to generate the 
corresponding test vectors, experience in real projects has 
shown that this ideal situation is almost never present. In 
practice, the system-under-test most likely contains behavior 
which is not fully described by the requirements. For example, 
we might have a requirement that only talks about output 
variables of the system, but the considered set of requirements 
does not fully describe how these outputs are connected with 
the inputs. Another typical issue is, that the process of 
formalization is often focused on the safety-critical 
requirements and is therefore rarely exercised for all 
requirements within a project. A practical solution to these 
challenges is, to analyze the requirement(s) together with the 
system-under-test for finding appropriate test data. In this case, 
a model checker can use the information from the system-
under-test to find an appropriate set of test cases to drive the 
system to the state(s) described by the requirement and to fully 
cover a requirement. Thanks to the information contained in 
the system-under-test, this method can even be applied for a 
single formalized requirement. One pre-condition for this 
approach is of course the availability of the system-under-test 
in a form that can be used as an input for the model checker. 
Therefore, the method is especially suitable for the unit-test of 
embedded software, where the system-under-test is typically 
available as ANSI-C code.  

The resulting test cases can then of course also be applied 
to other verification levels such as model-in-the-loop and 
processor-in-the loop. 

B. Simulation-based formal verification 

In a typical verification process, each test case is normally 

related to a requirement which is verified by executing this test 

and inspecting the result. However, if a test case fulfills “his 

requirement” but violates a different requirement, it would 

most likely be unnoticed. 

 

Fig. 5: Motivation for simulation-based formal verification 
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This issue can be efficiently addressed with formal 

specifications, allowing to automatically check all test data 

against a requirement. Assuming that a requirement has already 

been formalized, this so called “simulation-based formal 

verification” can be applied in the verification process with 

very little additional effort, while providing a high benefit 

regarding test depth and therefore quality. The method only 

requires access to the test data and a formal specification in 

executable form and can therefore be flexibly applied for any 

test level all along the V-Cycle, from unit test to hardware-in-

the loop testing. Furthermore, in contrast to methods like 

model checking, the complexity and size of the system-under-

test has no impact on the analysis effort, which makes this 

method also suitable for very large systems. The verification 

can either be performed “Online” by observing the system 

behavior during the test execution or “Offline” by analyzing 

recorded test data after the test execution. 

 

 

Fig. 6: Online Verification 

 

 

 

For the “Online Verification”, an executable requirement 

observer can be exported and then executed together with the 

system-under-test as shown in Fig. 6, for example as a real-

time application on an HIL system (The export of a 

requirement observer from the specification tool has already 

been presented in section II-D). If the tests are performed 

interactively with an experiment tool, the user is able to 

monitor the status of each requirement in real time. In case a 

test automation is used to automatically execute a series of 

pre-defined test scenarios, the test automation tool can access 

the requirement status in the same way as it reads interface 

variables from the system under test. This makes it very easy 

to integrate the additional information about a requirement 

being passed or failed into a test report. 

 

 
Fig. 7: Offline Verification 

 

 

Sometimes it can be difficult to integrate and execute the 

requirement observer together with the system-under-test, e.g. 

when performing in-vehicle tests. In this case, the verification 

can also be performed “Offline” using recorded test data, as 

shown in Fig. 7. This data can be imported into an analysis 

tool which checks all test recordings for violations of 

requirements. After the analysis the tool can generate a report 

showing which requirements are always fulfilled and which 

requirements are violated by which test case. In addition, the 

notion of requirements coverage that has been presented 

previously allows to provide information about how good a 

requirement has been covered by the given set of test cases. 

 

 

 

C. Formal verification using model checking 

 

When executing one or more test cases on a system-under-test, 

each test case represents one run through the possible 

combination of system states over time. Since covering all 

possible runs would require an almost infinite number of test 

cases, it can be concluded that testing is never complete and 

therefore requires to establish criteria to decide when to stop 

testing. Examples for this kind of criteria are requirements 

coverage (informal or formal) or structural coverage criteria 

like MC/DC. However, none of this can guarantee an error 

free system.  
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One method allowing to analyze all possible combinations of 

system states over time is model checking. When a system-

under-test is brought together with formalized requirements, a 

model checker can perform an automatic and complete proof 

showing, that no combination of input signals over time can 

bring the system into a state where the requirement is violated. 

However, if it is possible to bring the system into a state where 

the requirement is violated, the model checker will generate a 

corresponding test case as a counter example (see Fig. 6). 

Thanks to the analytical nature of model checking, the counter 

example will always be the shortest trace possible and will 

also only change a minimal set of interface variables. These 

characteristics typically facilitate an efficient and intuitive 

debugging.  

 

This method obviously requires a system-under-test which can 

be fed into the model checker, e.g. a function realized as 

ANSI-C Code. In addition, it needs to be said the analysis 

effort grows exponentially with the system size, which means 

that in practice the method is in particular applicable as part of 

the verification of software units. 

 

 

 
Fig. 8: Formal Verification using model checking 

 

 

 

IV. CONCLUSION  

 

The presented EmbeddedSpecifier method enables the 

engineer of embedded control software to specify 

requirements in a formal way and to fill the gap between 

informal textual requirements and machine-readable 

specifications. It provides an intuitive way of requirements 

specification, which directly addresses safety standard like 

ISO 26262 for functional safety for all safety integrity levels. 

Due to the computer-aided way of specification refinements, 

and due to the step-by-step way of structuring informal 

requirements, formal specification methods become usable 

even for non-experts. The automatic binding of existing 

testing architectures to the requirement specifications makes 

this method a very effective and efficient approach to enable 

automatic Formal Verification of any kind. The key-

technology here is the automatic Requirement-Observer-

Generation out of formal specifications, which builds the 

bridge between the operational world (executable 

specifications) and the declarative world (requirement 

statements). The described different levels of Formal 

Verification can be used very flexibly for different use cases 

and different test levels from unit test to system test. Even 

along the desired safety integrity level, different formal 

verification technologies can be selected by the user according 

to the given circumstances. The presented formal specification 

and formal verification methods in combination are one key of 

success for addressing three important aspects to cope with the 

time-to-market pressure of many industries: efficiency, quality 

and fulfilling safety standards.  

 

The presented approach has been realized as a requirement 

specification environment called BTC EmbeddedSpecifier. It 

comes as a standalone tool environment to enable formal 

specification in general, but it is smoothly integrated into the 

existing BTC EmbeddedTester automatic testing tool-chain 

especially made for dSPACE TargetLink as part of a strategic 

partnership. This seamless verification tool chain currently is 

heavily used in the automotive industry by many OEMs and 

tire-one suppliers in the embedded software domains of motor 

control, chassis, body electronic, transmission, powertrain etc. 

in Europe and Japan. In the near future, a connection to 

dSPACE Hardware-in-the-Loop Systems will be introduced to 

the market, which allows benefiting from formal verification 

technology even on integration and system level. 


