
1

Formal Verification for safety critical requirements
 From Unit-Test to HIL

Markus Gros

Director Product Sales Europe & North America

BTC Embedded Systems AG

Berlin, Germany

markus.gros@btc-es.de

Hans Jürgen Holberg

Senior Vice President Marketing & Sales

BTC Embedded Systems AG

Oldenburg, Germany

hans.j.holberg@btc-es.de

Abstract—The first part of this talk will present a method to

perform an intuitive and constructive formal requirement

specification. Starting point of the formalization process is the

informal textual requirement, which is structured step-by-step by

the user, in order to get a clear and unambiguous representation.

A new specification method called Universal Patterns allows

filling the gap between natural language and machine readable

description, without being an expert in formal methods. This

makes the formal world usable for engineers in the area of

embedded software development and testing. While being very

intuitive, Universal Patterns give full flexibility regarding

expressiveness and parameterization. Additionally, a maximum

of readability due to an on-the-fly graphical visualization is

guaranteed by this method in order to give final clearness about

the user specification. A

Since the formalized requirements are machine-readable,

they can afterwards dramatically improve the quality and

efficiency within the test and verification process. The machine-

readable requirement observers are automatically generated

form the universal pattern specification. They are used to

monitor the system under test automatically regarding

passed/failed status and requirement coverage rates. The second

part of this talk will show how formal requirements can be

smoothly integrated into different development and test

environments.

Finally in the conclusion of this talk, current experiences in

the automotive industry in the area of functional safety (ISO

26262, ASIL C+D) are presented and future improvements are

outlined.

Keywords—formal specification, formal verification, model

checking, requirements-based test case generation

I. INTRODUCTION

This paper consists of two main sections. The first part
(Section II) will focus on the methodology of formal
specification for safety requirements. The proposed method
will allow to guide the user intuitively through the different
steps of the process, starting with an informal requirement in
textual form. While this pattern based approach is already
proven in use in many production projects, this paper will also
introduce two new aspects in this context. The first aspect
proposes a different and more constructive approach to formal
specification using so called “Universal Patterns”. The second
aspect deals with the notion of requirements coverage and
introduces a reasonable definition which can serve for coverage
measurement purposes as well as for generating appropriate
test cases for a requirement. Section II will conclude with the
synthesis of requirement observers, which can be generated
from the formal specification in order observe the behavior of a
specific system-under test.

Since a formal specification represents an unambiguous and
machine readable representation of a requirement, it can serve
as the basis for several highly automated tasks within the test
and verification process. The second part of this paper (Section
III) will focus on three use cases, from which the first will talk
about automatic requirements-based test case generation,
where functional test cases can be generated automatically in
order to fulfill, and fully cover, a requirement. The second
example is the so-called simulation-based formal verification,
where any kind of test data can be checked against a
requirement. The section will conclude with the topic of formal
verification using model checking, where a mathematical proof
can show that a system-under test can never violate specific
requirement.

2

II. FORMAL SPECIFICATION OF SAFETY REQUIREMENTS

A. The EmbeddedSpecifier Method

The typical workflow of the presented requirements

specification method is shown in Fig. 1. It describes a step-by-

step formalization process, while with each step the user

specification becomes more and more structured and more

formal. It starts with a “Textual Requirement” specification

given typically in natural language, which is present as an

“Informal Specification”. In the next design step (1), the user

identifies relevant objects in the given text, which will be

identified as a "Macro Definition". These macros are used to

identify any kind of events, conditions and timing information

of the requirement under specification. In order to continue to

structure (2) the given “Textual Requirement”, the user can

select a proper method for the "Structure Definition". The

adequate method directly depends on the nature of the given

requirement. Practice has shown that not only one specification

method can be selected to cover the specification needs of

different application classes. However, for a huge set of

automotive applications, like body electronics, power train,

motor control, transmission and chassis, simple trigger action

schemes (let us call it “Patterns”), can be used to cover most of

the mission and safety critical requirements. In the presented

approach, so called “Universal Pattern Specifications” are used.

This approach provides the ability to construct any kind of

trigger/action relation for specifying functional and safety

critical requirements. Patterns can be instantiated simply by

filling the pattern parameters with Boolean expressions ranging

over architecture (e.g. model or code) elements/variables,

which can be imported (3) as an “Interface Description” from

any source. Along the typical workflow, instead of directly

addressing architecture / interface objects, the user can use the

former defined Macros in order to fill the pattern parameters

with a “Semi-formal specification” as an intermediate

specification step. Later on in the specification process (4), the

user can bind existing objects of the given “Interface

Description” like model elements or code variables to the

macros to finalize the “Formal Specification”. During this

specification step, the complete traceability between the

original text and the interface element is guaranteed via the

macro specification. The pattern specification method

guarantees an easy entry in the formal world, without having a

deep mathematical and theoretical background. This schematic

pattern approach allows full certainty about what has been

formally specified, without any final doubt. In the near future,

the set of Structured Specifications will be extended in order to

cover an extended list of application classes. Especially event

driven requirements, which come in long sequences, need

another specification approach. Here Sequence Diagrams

(SDs) or Life Sequence Charts (LSCs) have been used

successfully in several research projects in the past. In a

complete automated phase (5), a “Machine-readable

specification” aka “Requirement Observer” (e.g. C-Code or

Python etc.) can be generated for further formal verification

activities.

Fig. 1: Formalization process

B. Universal Pattern

The “Universal Pattern” structuring method allows the user

to define simple and complex trigger action relations in a

constructive and intuitive way. Fig. 2 shows a simple example

where a single “Trigger” and a single “Action” relation have

been defined. The relationship between the 2 events is defined

by the user, based on different universal pattern

“Interpretations”.

Fig. 2: Example of a Universal Pattern definition

3

Three different “Interpretation” can be selected:

 Progress (“implies eventually”)

 Ordering (“only after”, “not before”)

 Invariant (“always”)

The example shown in Fig. 2 considers the following informal

requirement of a car window controller:

“If an obstacle is detected at least for 50 ms, the window down

signal has to be activated for minimum time frame of 1 sec. “.

After selecting the right “Interpretation” of the “Universal

Pattern”, the user has to parametrize the “Trigger” and

“Action” object regarding time duration and stable condition.

For a “Semi-formal Specification”, 2 Macros are defined

directly with a simple use interaction on the textual

requirement:

1. “[..] obstacle is detected […]”-> ObstacleDetected

2. “[…] window down signal […]” -> WindowDown

The Macro ObstacleDetected becomes the “Trigger

Condition” and the Macro WindowDown is used to define the

“Action Condition”. The timing definitions are defined

directly with the specified time data: 50ms (Trigger

Duration), 10ms (Scope Duration) and 1000ms (Action

Duration) as real-time definitions. In order to reach the level

of a “Formal Specification” the 2 Macros have to be bound to

real “Interface Description” signals like “input”, “output”,

“local” and “calibration” variables of the system under

verification. If this level is reached, the syntax as well as the

semantics of the requirement specification is clearly defined.

C. Requirement Coverage

Based on the universal pattern specification method, a new

definition of requirement coverage has been identified and has

been mathematically defined in order to allow the

measurement of requirement coverage in complete automated

way. This is important for different reasons. Especially quality

standards like IEC 61508, ISO 26262 and DO 178c always

reference the term requirement coverage as the final goal of

testing, beside other structural coverage criteria like model or

code coverage. Additionally, this term is very important to

identify test goals for any kind of automatic test generation

activities. Generally the definition of requirement coverage

has been done upon the so called trigger/action relationship,

which is the basis for the universal pattern approach. The main

idea of requirement coverage is the ratio between the reached

relevant trigger combinations (𝑇𝑟𝑖𝐶𝑜𝑚𝑏𝑟𝑒𝑎𝑐ℎ𝑒𝑑), which

activate the corresponding action and all relevant trigger

combinations (𝑇𝑟𝑖𝐶𝑜𝑚𝑏𝑎𝑙𝑙):

𝑅𝑒𝑞𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑅𝑎𝑡𝑒 =
 𝑇𝑟𝑖𝐶𝑜𝑚𝑏𝑟𝑒𝑎𝑐ℎ𝑒𝑑

𝑇𝑟𝑖𝐶𝑜𝑚𝑏𝑎𝑙𝑙 %

As other coverage criteria, requirement coverage comes in

different levels of coverage according to the desired test

quality level to be reached (the higher the level the higher the

number of test sequences to be covered):

Level 0: Asks for reaching some of the goals. One trace

suffices which satisfies (or violates) the action.

Level 1: Asks for reaching all goals.

:

Level 2: Asks for reaching all combinations of goals

Level 3: Asks for reaching all time-depending

combinations of goals:

Fig. 3: Definition of levels for requirement coverage

D. Requirement Observers

After the user has specified requirements in a formal way, all

semantical information is available to represent the property in

a complete mathematical sense. This enables a complete

automatic synthesis (generation) of so called requirement

observers in an arbitrary computer language (e.g. c-code or

4

python). A requirement observer is defined over the name

space of the interface of the system under verification, as the

interface definition has been taken as one basis of the formal

specification of the original requirement. This observer acts as

a watch dog, which is part of the test harness of the system

under verification to judge at any moment in time of

execution, if the requirement is valid or not. In other words, it

is an automatic verdict function of the system under

verification in respect to the original specified requirement.

Fig. 4: Usage of requirement observers

The Figure above shows, that beside the verdict “Passed/Fail”

analysis, the requirement observer additionally can calculate

automatically the reached “Requirement Coverage” rates

based on the defined coverage criterion definition. Even more,

this requirement observers can be used for any Formal

Verification activity or automatic test generation process, if

the system under verification is parallel composed with the

requirement observers. These use cases will be presented in

more detail in the following section.

III. USING FORMAL SPECIFICATIONS IN THE VERIFICATION

PROCESS

A. Automatic requirements-based test vector generation

One of the most time consuming tasks in the testing and

verification workflow is typically the creation of appropriate
test cases, meaning to derive test cases from the textual
requirements. These test cases are used on all levels along the
v-cycle to show that a specific system-under-test correctly
implements the corresponding requirements, from unit test on
model- and code-level up the system tests and HIL testing.
Such a test case, or test vector, typically consists of vectorised
signals to be applied to the input variables of the system as well
as a test verdict that allows to decide if the requirement is
violated or not. But the manual analysis of textual requirements
followed by the manual creation of test vectors is not only time
consuming, it can also be error prone due to the interpretation
of the requirement performed by the “human” engineer and
depending on the quality and clarity of the requirements. In
addition, textual requirements and manually created test
vectors always lead to the question if a requirement has been

completely tested and how many test cases are actually needed
to completely cover a requirement.

In case a requirement has been formalized, these issues can
be addressed quite efficiently in an automated way. As the
formalized requirements are machine readable, automated
analysis methods such as model checking can be used, to
produce requirements-based test vectors automatically. For
these vectors the notion of “requirements coverage” that has
been introduced before also allows to make sure, that the
requirements are completely covered.

While theoretically a complete set of formalized
requirements for a system is sufficient to generate the
corresponding test vectors, experience in real projects has
shown that this ideal situation is almost never present. In
practice, the system-under-test most likely contains behavior
which is not fully described by the requirements. For example,
we might have a requirement that only talks about output
variables of the system, but the considered set of requirements
does not fully describe how these outputs are connected with
the inputs. Another typical issue is, that the process of
formalization is often focused on the safety-critical
requirements and is therefore rarely exercised for all
requirements within a project. A practical solution to these
challenges is, to analyze the requirement(s) together with the
system-under-test for finding appropriate test data. In this case,
a model checker can use the information from the system-
under-test to find an appropriate set of test cases to drive the
system to the state(s) described by the requirement and to fully
cover a requirement. Thanks to the information contained in
the system-under-test, this method can even be applied for a
single formalized requirement. One pre-condition for this
approach is of course the availability of the system-under-test
in a form that can be used as an input for the model checker.
Therefore, the method is especially suitable for the unit-test of
embedded software, where the system-under-test is typically
available as ANSI-C code.

The resulting test cases can then of course also be applied
to other verification levels such as model-in-the-loop and
processor-in-the loop.

B. Simulation-based formal verification

In a typical verification process, each test case is normally

related to a requirement which is verified by executing this test

and inspecting the result. However, if a test case fulfills “his

requirement” but violates a different requirement, it would

most likely be unnoticed.

Fig. 5: Motivation for simulation-based formal verification

5

This issue can be efficiently addressed with formal

specifications, allowing to automatically check all test data

against a requirement. Assuming that a requirement has already

been formalized, this so called “simulation-based formal

verification” can be applied in the verification process with

very little additional effort, while providing a high benefit

regarding test depth and therefore quality. The method only

requires access to the test data and a formal specification in

executable form and can therefore be flexibly applied for any

test level all along the V-Cycle, from unit test to hardware-in-

the loop testing. Furthermore, in contrast to methods like

model checking, the complexity and size of the system-under-

test has no impact on the analysis effort, which makes this

method also suitable for very large systems. The verification

can either be performed “Online” by observing the system

behavior during the test execution or “Offline” by analyzing

recorded test data after the test execution.

Fig. 6: Online Verification

For the “Online Verification”, an executable requirement

observer can be exported and then executed together with the

system-under-test as shown in Fig. 6, for example as a real-

time application on an HIL system (The export of a

requirement observer from the specification tool has already

been presented in section II-D). If the tests are performed

interactively with an experiment tool, the user is able to

monitor the status of each requirement in real time. In case a

test automation is used to automatically execute a series of

pre-defined test scenarios, the test automation tool can access

the requirement status in the same way as it reads interface

variables from the system under test. This makes it very easy

to integrate the additional information about a requirement

being passed or failed into a test report.

Fig. 7: Offline Verification

Sometimes it can be difficult to integrate and execute the

requirement observer together with the system-under-test, e.g.

when performing in-vehicle tests. In this case, the verification

can also be performed “Offline” using recorded test data, as

shown in Fig. 7. This data can be imported into an analysis

tool which checks all test recordings for violations of

requirements. After the analysis the tool can generate a report

showing which requirements are always fulfilled and which

requirements are violated by which test case. In addition, the

notion of requirements coverage that has been presented

previously allows to provide information about how good a

requirement has been covered by the given set of test cases.

C. Formal verification using model checking

When executing one or more test cases on a system-under-test,

each test case represents one run through the possible

combination of system states over time. Since covering all

possible runs would require an almost infinite number of test

cases, it can be concluded that testing is never complete and

therefore requires to establish criteria to decide when to stop

testing. Examples for this kind of criteria are requirements

coverage (informal or formal) or structural coverage criteria

like MC/DC. However, none of this can guarantee an error

free system.

6

One method allowing to analyze all possible combinations of

system states over time is model checking. When a system-

under-test is brought together with formalized requirements, a

model checker can perform an automatic and complete proof

showing, that no combination of input signals over time can

bring the system into a state where the requirement is violated.

However, if it is possible to bring the system into a state where

the requirement is violated, the model checker will generate a

corresponding test case as a counter example (see Fig. 6).

Thanks to the analytical nature of model checking, the counter

example will always be the shortest trace possible and will

also only change a minimal set of interface variables. These

characteristics typically facilitate an efficient and intuitive

debugging.

This method obviously requires a system-under-test which can

be fed into the model checker, e.g. a function realized as

ANSI-C Code. In addition, it needs to be said the analysis

effort grows exponentially with the system size, which means

that in practice the method is in particular applicable as part of

the verification of software units.

Fig. 8: Formal Verification using model checking

IV. CONCLUSION

The presented EmbeddedSpecifier method enables the

engineer of embedded control software to specify

requirements in a formal way and to fill the gap between

informal textual requirements and machine-readable

specifications. It provides an intuitive way of requirements

specification, which directly addresses safety standard like

ISO 26262 for functional safety for all safety integrity levels.

Due to the computer-aided way of specification refinements,

and due to the step-by-step way of structuring informal

requirements, formal specification methods become usable

even for non-experts. The automatic binding of existing

testing architectures to the requirement specifications makes

this method a very effective and efficient approach to enable

automatic Formal Verification of any kind. The key-

technology here is the automatic Requirement-Observer-

Generation out of formal specifications, which builds the

bridge between the operational world (executable

specifications) and the declarative world (requirement

statements). The described different levels of Formal

Verification can be used very flexibly for different use cases

and different test levels from unit test to system test. Even

along the desired safety integrity level, different formal

verification technologies can be selected by the user according

to the given circumstances. The presented formal specification

and formal verification methods in combination are one key of

success for addressing three important aspects to cope with the

time-to-market pressure of many industries: efficiency, quality

and fulfilling safety standards.

The presented approach has been realized as a requirement

specification environment called BTC EmbeddedSpecifier. It

comes as a standalone tool environment to enable formal

specification in general, but it is smoothly integrated into the

existing BTC EmbeddedTester automatic testing tool-chain

especially made for dSPACE TargetLink as part of a strategic

partnership. This seamless verification tool chain currently is

heavily used in the automotive industry by many OEMs and

tire-one suppliers in the embedded software domains of motor

control, chassis, body electronic, transmission, powertrain etc.

in Europe and Japan. In the near future, a connection to

dSPACE Hardware-in-the-Loop Systems will be introduced to

the market, which allows benefiting from formal verification

technology even on integration and system level.

