
From Safety Requirements to Safety Monitors – Automatic

Synthesis in Compliance with ISO 26262

Hans J. Holberg
SVP Marketing & Sales, BTC Embedded Systems AG

An der Schmiede 4, 26135 Oldenburg, Germany
hans.j.holberg@btc-es.de

Dr.-Ing Stefan Häusler

Product Manager, BTC Embedded Systems AG
An der Schmiede 4, 26135 Oldenburg, Germany

stefan.haeusler@btc-es.de

Abstract: The development of safety-critical electronic systems in the automotive domain
is standardized by the ISO 26262 Road vehicles - Functional safety. Depending on the
concrete risk classification (Automotive Safety Integrity Level, ASIL for short), necessary
safety requirements and activities are specified in order to achieve an acceptable residual
risk of the system.

In particular for the higher ASILs, the ISO 26262 standard recommends the application of
model-based development processes and the usage of (semi-)formal languages to
specific requirements. Besides process recommendations, the ISO 26262 standard itself
recommends the use of external monitoring facilities and plausibility checks at the
architectural level in order to be able to detect and resolve errors at run-time (ISO 26262-
6, Clause 7.4.14). In its most simple form, such a safety monitor corresponds to a
software watchdog that regularly observes the systems liveliness and triggers some kind
of safety mechanism on error. A more advanced monitor is able to observe dedicated
properties of the system in order to trigger suitable mitigation steps, e.g. in order to
implement a graceful degradation of certain system parts. For short, safety monitors are
responsible to check whether safety requirements are fulfilled during vehicle operation.

Therefore, a tool-assisted synthesis of monitoring functionality out of existing requirement
specifications is clearly desirable for such architectures. First of all, it reduces the efforts in
creating such functionality. Secondly, it increases the coherence and traceability between
requirements and its implementation.

We will demonstrate, how a specification language for formal requirements, namely the
Pattern Library developed by BTC Embedded Systems AG, can be used to automatically

generate safety monitors within a model-based development process using Simulink®

(developed by The MathWorks) and TargetLink® (developed by dSPACE). Furthermore,

we will describe the necessary activities in order to embed this mechanism into an ISO
26262 compliant development process. Finally, we will show the benefits of lifting the
development of monitoring functionalities to the level of model-based design. In particular,
it will benefit from all its simulation and testing abilities along the development phases,
including the early evaluation of safety mechanisms in rapid prototyping environments.
The approach was evaluated successfully with European and Japanese customers from
automotive industries.

From Safety Requirements to Safety Monitors – Automatic

Synthesis in Compliance with ISO 26262

- 2 -

1 Introduction

To reduce the efforts in creating safety mechanisms and to increase the

coherence and traceability between requirements and its implementation, this

paper presents a tool-assisted synthesis of monitoring functionality out of existing

requirement specifications. In section 2, we will demonstrate, how a specification

language for formal requirements, namely the Pattern Library developed by BTC

Embedded Systems AG, can be used to automatically generate safety monitors

within a model-based development process using Simulink® (developed by The

MathWorks) and TargetLink® (developed by dSPACE). In section 3, we will

describe the necessary activities in order to embed this mechanism into an ISO

26262 compliant development process. In section 4, we will show the benefits of

lifting the development of monitoring functionalities to the level of model-based

design. In particular, it will benefit from all its simulation and testing abilities along

the development phases, including the early evaluation of safety mechanisms in

rapid prototyping environments.

2 Requirement-based Synthesis of Safety Monitors

In this section, we describe the synthesis workflow of safety monitors out of

formalized requirements given in terms of declarative patterns. The overall

workflow shown in Figure 1 illustrates the different translation steps.

Input for the translation process is a pattern based formal requirement

specification using the BTC Pattern Library [PATTERN] as described in Section

2.1. The resulting pattern specification given in XML is translated to the

instantiation code as described in Section Fehler! Verweisquelle konnte nicht

gefunden werden.. Section 2.3 finally describes code generation and its

aggregation into a self-contained C-Observer. For this C-Observer code, a

CustomCode block is generated which has an input port for each system variable

that is used in the parameter expressions and a single output variable that states

whether the specification is currently satisfied or not. The code-generator

TargetLink® for the modeling tool Simulink® will then integrate the underlying C

code with respect to the connected input signals and will provide the actual

evaluation of the pattern specification at the outport of the block.

From Safety Requirements to Safety Monitors – Automatic

Synthesis in Compliance with ISO 26262

- 3 -

Figure 1: Abstract visualization of the generation steps.

To this end, we first introduce the pattern language in its abstract form and then

describe how this language can be instantiated for obtaining code- and model-

based observers in different variants.

2.1 The BTC Pattern Library

The BTC Pattern Library comprises a set of pre-defined specification templates

and covers the most common types of temporal requirements used for the

specification of embedded systems. It thereby eases the transition from an

informal specification (e.g. a textual description) to a mathematically precise

representation of the requirement. To do this translation, the user chooses a

suitable pattern template and instantiates the pattern template parameters with

concrete expressions for his requirement.

For example, the textual requirement

“The pressure must reach 3 bar at most 5 ticks after the valve has been closed.”

can be formalized by using the pattern template

cyclic_P_implies_finally_Q_B

where the pattern template parameters P, Q, and B are mapped to suitable

system expressions, e.g.

P : lastValveState == ST_OPEN && valveState == ST_CLOSE
Q : pressure >= 3
B : 5

The semantics of each pattern template in the BTC Pattern Library is precisely

defined by an automaton description. These automata capture the temporal

aspects of the patterns by distinguishing accepting from non-accepting system

runs, which are well-understood concepts in the computer science.

Pattern

Specification

Instantiation

Code
Translation

BTC Pattern

Library

aggregated

C-Observer

 Aggregation
Generation

CustomCode

Block

(XML)

(C)

(C)

(C)

BTC Pattern2CObserver BTC CObserver2Simulink

(TL)

From Safety Requirements to Safety Monitors – Automatic

Synthesis in Compliance with ISO 26262

- 4 -

The formal automaton description for the pattern template example used above is

shown in Figure 2. Starting at the initial state 0, the automaton goes to state 1

when proposition P is true and simultaneously starts a counter X with value zero.

If Q becomes true before the automaton has taken max_X times the self-loop at

state 1, it enters the initial (accepting) state 0. If X reaches max_X and Q is not

satisfied, the non-accepting state 2 is entered. That is, only those system runs

where proposition Q becomes true at most max_X steps after each point in time

where proposition P has become true, are accepted by the automaton.

Figure 2: Automaton description for cyclic_P_implies_finally_Q_B

Note that the syntax and semantics of the BTC Pattern Library itself only reasons

at this abstract level of propositions (i.e. the pattern template parameters) and

numeric bounds, and has to be properly instantiated by assigning the concrete

system expressions to its parameters.

In order to be usable for e.g. verification purposes, the BTC Pattern Library also

provides pre-defined functions (written in the C programming language)

corresponding to the pattern template automata. These C functions expect the

pattern template parameters as arguments and return a value (of type (effectively)

boolean) that states whether the underlying pattern specification is satisfied or

not. At the C code level, the instantiation of a pattern template then corresponds

to calling the pattern templates’ C function with the concrete expressions as

arguments.

Technically, a formal requirement based on the BTC Pattern Library can be

specified using BTC EmbeddedSpecifier® [BTCEW2012], a tool to ease the

formal specification process starting from informal requirements. This tool is able

to generate the needed XML format that contains both the employed pattern

template and the mapping of the pattern parameters to the system expressions.

From Safety Requirements to Safety Monitors – Automatic

Synthesis in Compliance with ISO 26262

- 5 -

2.2 Pattern Instantiation in C

As a convenient way to actually use the BTC Pattern Library, the tool BTC

Pattern2CObserver translates an XML-based pattern specification to a C code

fragment. The generated C code instantiates the pattern library as described

above, by creating the corresponding assignment statements and function calls.

For example, the pattern specification example given above would be translated

the following kind of C code. Note that the actual code generated by the current

version of the tool includes some more statements to account for certain

integration aspects, but the basic structure is faithfully reflected in the following

code snippet.

#include “btc_pattern_library.h”

static unsigned char PatternId1(void)
{

static btcpatlib_state_t state;

unsigned char P = (lastValveState == ST_OPEN && valveState == ST_CLOSE);
unsigned char Q = (pressure >= 3);
int B = 5;

return btcpatlib_cyclic_P_implies_finally_Q_B(&state, P, Q, B);

}

The state variable is a C structure which holds the current state of the pattern

automaton and the current values of the numeric counters. Its type is defined by

the BTC Pattern Library and is used by the instantiation code as shown in the

code fragment above.

Besides integrating this C code into the final production code, it can, for example,

be imported with BTC EmbeddedTester® as a so-called C-Observer in order to

automatically generate test vectors that cover the underlying pattern specification

[BTCEW2011].

2.3 Synthesis of Safety Monitors

In a final step, the C code generated from the pattern specification is integrated

into the final production code in order to use the boolean return value of the C

function as a run-time observer. As already laid out in the introduction, such a

pattern specification then typically expresses a certain safety condition, where a

run-time violation of it needs to be mitigated by appropriate reactions, e.g. by

entering a safe system state.

BTC Embedded Systems AG has developed the tool BTC CObserver2Simulink

that allows to seamless embed the generated C-Observer into a model-based

development process using Simulink/TargetLink. To this end, the tool takes the C

From Safety Requirements to Safety Monitors – Automatic

Synthesis in Compliance with ISO 26262

- 6 -

code representation of a pattern specification as input and generates a so-called

TargetLink CustomCode-Block that internally contains the C code and the

relevant portion of the BTC Pattern Library (see Figure 3). The user of the tool

can then integrate this model entity by connecting the inputs and output of this

block with his overall system model, and in particular use the output of the

CustomCode block to trigger the appropriate system behavior.

Figure 3: A generated CustomCode block containing the C code of an instantiated pattern.

3 Using Synthesized Safety Monitors in ISO 26262

In this section, we discuss the required tasks and activities that are necessary in

order to enable the use of synthesized safety monitors in a development process

according to the ISO 26262 standard. The relevant statements related to the use

of external software tools and components are given in part 8 (“Supporting

processes”) of the safety standard. In particular, clause 8.11 addresses the

“Confidence in the use of software tools” and clause 8.12 defines the

“Qualification of software components”.

Following this terminology, the BTC Pattern Library (in particular its set of pre-

defined C function source code) can be considered as a software component

according to clause 8.12. Hence, the library itself can be qualified accordingly by

the vendor of the component. The additional instantiation artifacts (i.e. the code

and model entities) that are used to instantiate and integrate the library depend on

the actual system to be developed and hence fall into responsibility of the user of

the component. This means that the appropriate activities of part 6 (“Product

development at the software level”) of the ISO 26262 have to be ensured by the

user, in particular unit testing of the instantiation code and verification of the

integration aspects. The following figure visualizes the responsibilities.

From Safety Requirements to Safety Monitors – Automatic

Synthesis in Compliance with ISO 26262

- 7 -

Figure 3: Visualization of the verification responsibilities.

In Section 3.1, we describe the qualification of the library component in more

detail. The activities related to the translation and generation steps as described

above are explained in Section 3.2. In Section 4, we focus on the model-based

aspects of the proposed solution.

3.1 Qualification of the BTC Pattern Library

In ISO 26262-8 12.1, the objective of the qualification of software components is

defined as “to provide evidence for their suitability for re-use”. Planning the

qualification of a software component (12.4.2) includes the unique identification of

the software component, the determination of the maximum target ASIL of any

safety requirement to be allocated, and the identification of the activities to be

carried out for qualification.

For the BTC Pattern Library, a unique library version will be fixed for identification.

To support a broad class of applications, the library should be qualified with

respect to ASIL D.

To be able to consider the library as qualified (12.4.1), the activities listed in the

following subsection shall be carried out. Additionally, it has to be shown that the

library is developed according to an appropriate national or international standard.

3.1.1 Specification of the Software Component (12.4.3.1)

This activity includes the specification of the components’ requirements and

configuration, a description of its interface and integration and dependencies with

other software components, its reactions under anomalous conditions and its

known anomalies with possible workarounds. When appropriate, an application

manual should be established.

The functional requirements of the BTC Pattern Library are already well-

documented and in particular comprise a precise characterization of its semantics

in form of automaton descriptions. Also, the complexity and resource usage of the

library code has already been investigated. Some major findings are the following:

BTC Pattern

Library

Unit test (vendor)

Unit test (user)

System Model

Integration test (user)

C-Observer

Instantiation

Artifacts

From Safety Requirements to Safety Monitors – Automatic

Synthesis in Compliance with ISO 26262

- 8 -

 no heap memory usage

 limited, statically determined stack/data segment usage

 constant determination complexity only dependent on the pattern type

 linear complexity depending on pattern number

The description of the interface and further integration aspects can be defined

based on the signatures of the C functions. The behavior under anomalous

conditions and known anomalies of the library itself will be documented according

to the standard. An application manual which explains the temporal semantics of

the pattern types and which defines the adequate instantiation of the library

functions is to be provided by the vendor of the component.

3.1.2 Show Compliance of the Component with its
Requirements (12.4.3.2/3/4)

The coverage of the components’ requirements has to be shown by a suitable test

suite on the unit level (in accordance with ISO 26262-6, Clause 9). For ASIL D,

the structural coverage shall reach modified condition / decision (MC/DC) level.

Both normal operation and the behavior in the case of failures shall be addressed.

Note that the analysis is only valid for an unchanged implementation of the

component.

The BTC Pattern Library can be verified independently from its actual usage on

the unit level by the vendor of the component. Recall that the C function library

implements the pattern semantics on an abstract level of propositions, and that

the semantics is precisely given by means of automata descriptions. This allows

for deriving suitable requirements-based test vectors, where a successful test

means that the C implementation of a pattern template must return true if and only

if the test vector is accepted by the corresponding automaton.

The automaton description will also ease the generation of the needed set of test

vectors in order to reach MC/DC coverage of the source code. The task is to

derive test vectors which, for each transition in the automaton, show that each

conditional part of the transition annotation independently make the transition true

or false, respectively. As the automaton transitions are directly mapped to

conditions in the source code of the library, the MC/DC coverage will also be

reached here. Note that this coverage is only guaranteed with respect to the host

code and compiler, and a corresponding coverage for the actual employed target

has to be ensured by the user. To this end, the set of test vectors obtained at the

host can be used as a validation suite and re-executed by the user for the actual

target system.

From Safety Requirements to Safety Monitors – Automatic

Synthesis in Compliance with ISO 26262

- 9 -

3.1.3 Show the Suitability of the Component for its intended Use
(12.4.4)

This purpose of this activity is to ensure that the qualification of the software

components including the validity of the results matches the indented use of the

component. This is in particular needed when the components development

context significantly differs from its application context, e.g. when transferring

components between different industrial or automotive domains. Evidence has to

be provided that the specification of the component complies with the

requirements of the indent use.

By its design, the functionality of the BTC Pattern Library is almost independent of

its application such that no special transfer from different development and

application context has to be provided. Still it is of importance that the user of the

library has the same understanding of its functionality as the component vendor.

The mathematically precise specification of the pattern semantics help in this

context, still the non-trivial semantics, in particular of the more complex pattern

templates, require a good understanding of the temporal interrelations. Beside the

functional specification, the supporting textual description of the BTC Pattern

Library and its semantic characteristics given in the application manual need to be

reviewed and accepted by the user of the software component.

3.2 Handling of the Instantiation Artifacts

Typically, the generated safety monitor will be used to (partly) implement a safety

requirement that has been identified in a prior analysis phase of the development

process. Hence, the generated instantiation code as well as the generated

CustomCode block has to adhere to the general requirements imposed by ISO

26262-6 (“Product development at the software level”). The user of the

component is responsible for this activity. In particular, both artifacts have to be

tested on the unit level according to ISO 26262-6 Clause 9 (“Software unit

testing”). The concrete activities for this process steps depend on the ASIL that

has been allocated to the underlying safety requirement. At least, a requirements-

based test and an interface test are included in these activities, and a certain

structural coverage of the used test vectors has to be reached. In fact, there are

not many decisions to be covered in the structural part of the instantiation artifacts

as most of the code lines are solely needed to call the pattern library functions

with the expressions given for the pattern template parameters. The expressions

itself are provided by the user of the pattern library and have to be covered

according to the required metrics.

From Safety Requirements to Safety Monitors – Automatic

Synthesis in Compliance with ISO 26262

- 10 -

The combination of the pattern instantiation code with the actual pattern library

function is covered by ISO 26262-6, Clause 10 (“Software integration and

testing”). Again, the concrete activities of the user depend on the underlying ASIL,

but at least a requirement-based test and an interface test has to be performed on

the integration level. The structural code coverage has to ensure function or call

coverage, which, due to the linear control flow within the instantiation code,

should be easy to achieve.

As the generated pattern instantiation code (and the corresponding CustomCode

block) follows a well-defined construction schema, it is meaningful and feasible to

include a manual walk-through of the generated code into the overall

development process. This step in particular verifies that the BTC Pattern Library

is used according to its application manual.

The confidence level for the tools is determined according to ISO 26262-8 Clause

11.4.5.2 as follows. As a malfunction of the tools has the potential to introduce

errors in the safety-related item, a tool impact of TI2 has to be selected for the

tools. By the activities described above, a complete examination of the output of

the tools that generate the instantiation artifacts and the CustomCode block can

be guaranteed. Thus, a tool error detection level of TD1 can be selected for these

tools. In combination, this leads to a tool confidence level of TCL1 for which no

further qualification methods need to be performed (ISO 26262-8, Clause

11.4.6.1).

4 Exploiting the Model-Based Approach

Note that the generated CustomCode block in particular supports the seamless

integration of the synthesized monitors in a model-based development process.

This kind of development in general supports a systematic and coherent view on

the requirements-, design-, implementation- and verification- phases of the

development. The ISO 26262 specially addresses model-based development and

testing, e.g. in ISO 26262-6 Annex B. Especially for the integration testing phase,

a back-to back comparison between model and code is recommended for higher

ASIL in ISO 26262-6 Table 13. The basic principle is to apply a set of test vectors

on both representations of the system and compare the results. If these test

vectors cover a sufficient amount of the systems’ behavior, errors that have been

introduced during the transition from the model to the code representation are

uncovered. The same principle can be applied on different code levels, e.g. to

compare the behavior of the host code with the final production code on the target

system.

As the BTC EmbeddedTester® is aware of the C-Observer also as native source

code, one can in particular define a tailored test that ensures a correct generation

From Safety Requirements to Safety Monitors – Automatic

Synthesis in Compliance with ISO 26262

- 11 -

and integration of the corresponding source code as a CustomCode model block.

Here, a test vector which satisfies the C-Observer must also lead to a true output

of the CustomCode block, and vice versa. Also, the further back-to-back testing

activities during the subsequent integration and validation phases, which in

particular include the safety monitors, can be handled by the BTC

EmbeddedTester® as a qualified testing tool according to ISO 26262.

5 Conclusion

In this paper, we have presented how safety monitors can be synthesized from

formalized requirements. By a pattern-based generation of such monitors on a

model-based design level, the generated monitor functionality can benefit from

the full range of model-based development advantages, including early simulation

capabilities and derivation of test vectors for subsequent back-to-back testing for

its integration up to the final production code.

We have in particular discussed the required activities for embedding the safety

monitoring in an ISO 26262 compliant development process. This includes the

qualification of the kernel pattern library as a software component according to

ISO 26262-8, 11. Additional (testing) activities for using the library have been

discussed from the view point of the component user. In general, the derivation of

safety functionality out of existing safety requirements fits well into the spirit of the

ISO 26262, as it provides a stringent traceability from the requirement to its

implementation and vice versa. Also the usage of model-based design principle is

encouraged by the ISO 26262 standard and is supported by the synthesis

mechanism as proposed in this document.

The BTC Pattern Library itself provides a convenient way to formulate

unambiguous specifications even for non-trivial embedded systems. While a

precise specification itself is already of great value, its re-use for synthesizing

parts of its implementation increases its benefit even more. Although most steps

of the synthesis can be automated by tools, a thorough review and test of the

output is needed, in order to both discover potential errors in the generation itself

but also to ensure that the intended semantics of the safety requirements is

correctly captured by the obtained safety mechanism. Using a qualified library will

help the user in this activity as it allows focusing on the requirement itself. The

approach was evaluated successfully with European and Japanese customers

from automotive industries.

From Safety Requirements to Safety Monitors – Automatic

Synthesis in Compliance with ISO 26262

- 12 -

Aknowledgement

The work presented in this paper has been supported by the ARTEMIS-JU project

MBAT.

From Safety Requirements to Safety Monitors – Automatic

Synthesis in Compliance with ISO 26262

- 13 -

Bibliography

[ISO26262] Road vehicles – Functional Safety, International Organization

for Standardization, ISO 26262, 2011

[PATTERN] Pattern Specification - BTC EmbeddedTester Version 2.9 Tool

Documentation, BTC Embedded System AG, 2012

[BTCEW2011] ISO 26262 compliant verification of functional requirements

inthe model-based software development process, Hans

Holberg and Dr. Brockmeyer, Embedded World Conference

2011

[BTCEW2012] Computer-aided Formal Specification to enable a fully

automated Requirement-based Testing Process, Hans Holberg

and Dr. Brockmeyer, Embedded World Conference 2011

	From Safety Requirements to Safety Monitors – Automatic Synthesis in Compliance with ISO 26262
	Hans J. HolbergSVP Marketing & Sales, BTC Embedded Systems AGAn der Schmiede 4, 26135 Oldenburg, Germanyhans.j.holberg@btc-es.de
	Dr.-Ing Stefan HäuslerProduct Manager, BTC Embedded Systems AGAn der Schmiede 4, 26135 Oldenburg, Germanystefan.haeusler@btc-es.de
	1 Introduction
	2 Requirement-based Synthesis of Safety Monitors
	2.1 The BTC Pattern Library
	2.2 Pattern Instantiation in C
	2.3 Synthesis of Safety Monitors

	3 Using Synthesized Safety Monitors in ISO 26262
	3.1 Qualification of the BTC Pattern Library
	3.1.1 Specification of the Software Component (12.4.3.1)
	3.1.2 Show Compliance of the Component with its Requirements (12.4.3.2/3/4)
	3.1.3 Show the Suitability of the Component for its intended Use (12.4.4)

	3.2 Handling of the Instantiation Artifacts

	4 Exploiting the Model-Based Approach
	5 Conclusion
	Aknowledgement
	Bibliography
	[ISO26262] Road vehicles – Functional Safety, International Organization for Standardization, ISO 26262, 2011
	[PATTERN] Pattern Specification - BTC EmbeddedTester Version 2.9 Tool Documentation, BTC Embedded System AG, 2012
	[BTCEW2011] ISO 26262 compliant verification of functional requirements inthe model-based software development process, Hans Holberg and Dr. Brockmeyer, Embedded World Conference 2011
	[BTCEW2012] Computer-aided Formal Specification to enable a fully automated Requirement-based Testing Process, Hans Holberg and Dr. Brockmeyer, Embedded World Conference 2011

