

ISO 26262 compliant verification of functional
requirements in the model-based software

development process

Hans J. Holberg
SVP Marketing & Sales, BTC Embedded Systems AG

An der Schmiede 4, 26135 Oldenburg, Germany
hans.j.holberg@btc-es.de

Dr. Udo Brockmeyer
CEO, BTC Embedded Systems AG

An der Schmiede 4, 26135 Oldenburg, Germany
udo.brockmeyer@btc-es.de

Abstract: The model-based software development process is generally

accepted in the automotive and aerospace domain. More or less seamless

tool-chains support the model-based approach in order to help improving the

functional safety aspects of such processes while keeping the efficiency

under growing complexity concerns. In the last decade, fundamental

progress and improvements in the area of modelling, simulation and

automatic code generation have been achieved. Even in the area of fully

automated structural testing, various solutions have been successfully

entered the tool-chains. Concerning the verification of functional

requirements in the model-based domain, there is still big room for

improvements. Especially the demand of having an automatic, scalable

approach for functional testing and formal verification is not yet achieved.

This paper presents an automatic approach that has been developed in order

to efficiently support international standards regarding functional safety, like

ISO 26262 for automotive. It presents an integrated method to use

automatically synthesized C-code observer fragments from formalized

specifications. Then requirements based functional test and formal

verification can be almost automated as the synthesised C-code observers

are automatically embedded into a test and verification tool environment.

This includes the model, code and object code levels such that a very

general use of C-observers can be shown. The automation of this approach

includes the requirements-based test case generation, automatic test

execution and analysis, as well as test quality measurement and coverage of

requirements. The described method effectively and smoothly fits into the

framework of software quality standards as it is for instance specified in the

new automotive standard for functional safety ISO 26262. The approach has

already been implemented in a first version for the Matlab/Simulink tool chain

on top of the production code generator TargetLink from dSPACE. Further

future potential of such observer technology, for instance 'embedded

diagnostics' by using C-observers, will also be discussed.

ISO 26262 compliant verification of functional
requirements in the MBD process

- 2 -

1 Field of Application

The presented method1 has been introduced within a widely used model and auto

code2 based testing and verification tool environment3 as an extension4 to enable

automatic requirements based testing. The testing tool environment’s main use case in

the past was the automatic structural back-to-back testing between MiL5, SiL6 and PiL7

including full automatic structural test vector generation to ensure a maximum model

and code coverage up to MC/DC8. This approach allows to automatically test all

development steps from the model level down to the implementation level. It finally lifts

testing up to the model level, hence called model based testing. The model based

approach is in the main focus of this development and test environment, but even any

kind of C-Code resulting from other code generation and even hand written code

sources is supported. The main use case structural back-to-back testing is supporting

the recommended ISO 26262 methodology and has been certified by an independent

certification body to be “suitable for purpose” for all defined ASILs9 from A to D. This

touches an important described method of the ISO 26262, but requirements related

testing methodologies of the ISO 26262 are not automated by this back-to-back testing

approach. In order to enable more automatic testing for requirement-based testing of

the testing tool environment an extension to the former introduced main use case is

described in the following chapters. Two main topics are addressed. First, the new

extension shall cover all important recommendations of the ISO 26262 concerning

requirements based testing, and second it shall automate the testing as much as

possible within the MBD10 Process.

This new approach has been introduced successfully in the automotive domain last

year in Germany and Japan. First results are very promising regarding three aspects:

• Smooth integration in the existing testing process

• Efficiency gains

• Quality improvements

1
 This work has been partially funded by ARTEMIS in the European project CESAR.

2
 Here: Matlab Simulink/Stateflow (The Mathworks) in combination with the leading automotive code generator

TargetLink (dSPACE GmbH) has been used in real serial production projects as standard modelling and code
generation environment.
3
 Here: BTC EmbeddedTester from BTC Embedded Systems AG is used. It became a standard test and

verification tool environment for TargetLink users in the automotive domain.
4
 BTC EmbeddedTester extension: Requirement-based Verification and Testing with C-Observer

5
 MiL: Model in the Loop. Normally it is a closed-loop system model which consists of the control component plus

plant (environmental) model. Here, an open-loop with an automatically generated test harness is used to
automatically test the SUT (System under Test).
6
 SiL: Software in the Loop. In contrast to PiL, the real target hardware is replaced by the used host-computer and

its ordinary processor. The developed model of the software is only translated into target hardware compatible
code. The plant model is replaced by a test driver (automatically generated test harness).
7
 PiL: Processor in the Loop. In contrast to SiL real target hardware (evaluation board) is used to load the

application on it for testing. This allows identifying compiler- and processor issues.
8
 Modified Condition Decision Coverage (MC/DC): A set of test vectors, which make every decision TRUE and

False while each single condition of that decisions has an independent influence on the value of that decision. A
100% MC/DC coverage guarantees the detection of any failure within a decision of the mode or model.
9
 Automotive Safety Integrity Levels (ASIL A, ASIL B, ASIL C and ASIL D). Level A is the lowest and D the highest

safety integrity level.
10

 Model Based Development

ISO 26262 compliant verification of functional
requirements in the MBD process

- 3 -

2 ISO 26262 Software Testing and Verification Tasks

As the upcoming11 automotive standard ISO 26262 is one of the most important state of

the art functional safety foundation for any testing and verification tasks in this industry

domain, the relevant definitions and recommendations regarding requirements based

testing are summarized within this chapter. The following figure shows the importance

of the Requirement-based Testing12 for all ASILs in the ISO 26262.

Figure 1: ISO 26262 recommendations regarding Software Unit Testing

The ISO 26262 distinguishes three kinds of requirement notions:

• Informal Notations.

This description technique does not have its syntax defined completely. This

kind of documentation is widely used in an intuitive way; for example natural

language/ informal text definitions of requirements and any kind of figures and

drawings.

• Semi-formal Notions.

If the syntax of a notation is completely defined, but the semantics definition is

incomplete, it is called semi-formal. It is an example of a machine readable

specification, which can not be used for any further analysis. One example is an

UML Use-Case diagram, which has its syntax and ambiguous interpretations.

• Formal Notations.

This describes a technique that has both, its syntax and semantics defined

completely. Example for this are executable models, c-code and formal

language specifications.

In order to automate any kind of testing based on requirements, it is obvious to use

Formal Notations, which are machine readable and which can be used for further

algorithmic analysis techniques. Trade-off on the other side is the difficulty for a human

being to fill the gap between informal and formal specification. This problem will be

11

 The final release of this international standard is planed for 2011 and it is available as a Draft International
Standard (“DIS”) since mid of 2009.
12

 ++ means „Highly Recommended“

ISO 26262 compliant verification of functional
requirements in the MBD process

- 4 -

addressed in one of the following chapters by introducing an intuitive high level

abstraction specification method called Pattern Approach.

A Formal Specification in the sense of ISO 26262 is defined as a method which is

based on a specific Formal Notation. This formal specification part is addressed by the

described method upon so-called C-Observer Specification, with syntax and semantics

is well defined. The relationship between the high-level user friendly formal requirement

specification level and the technical formal realization will be defined later in this paper.

Figure 2: ISO 26262 recommendations regarding verification of requirements

Semi-formal and Formal Verification plays an important role as methods for the

verification of requirements of ASILs B to D, as can be seen in the table above. It is also

of interest especially regarding automatic approaches, that Semi-formal Verification can

be fulfilled by executable models. In other words, it can be done via model simulation.

Formal Verification on the other hand is defined as a method which is used to ensure

the correctness of an SUT13 against a Formal Specification of its required behavior. The

standard is not talking about Formal Verification as a complete mathematical method. It

is defining Formal Verification simply upon Formal Specification of Requirements as a

basis for the verification task. Thus, any testing activity, which is done on the basis of

clear syntactical and semantical specifications, is fulfilling the ISO 26262

recommendations in relation to Formal Verification. The ISO standard recommends the

introduction of quality measurement and coverage metrics to fulfill certain ASILs, for

instance Formal Verification. It defines a maturity gate regarding requirements by

introducing the term Requirements Coverage defined in a more intuitive way.

In order to use this important maturity gate in the context of automatic testing, a new

approach of measuring Requirements Coverage is introduced within the described

method. It will be defined later on with C-Observer Code Coverage.

13

 System Under Test („SUT“)

ISO 26262 compliant verification of functional
requirements in the MBD process

- 5 -

Figure 3: ISO 26262 recommendations regarding notations of unit designs

When an MBD process is used, which introduces executable models, the SUT has a

machine readable and unique interpretation, which is the preliminary for automatic

testing approaches. The figure above shows that Formal Notations are recommended

(+) for all ASILs.

The next chapter will combine the ISO 26262 derived recommended methods:

• Executable Model (Formal Notations of Designs)

• Specification and Verification Approach (Formal Verification)

• Quality Measurement of the Verification and Test Activities (Coverage)

together with existing automatic test/verification and formal specification technologies in

order to extend the existing back-to-back testing approach by automatic requirement-

based testing to allow ISO 26262 compliant MBD.

3 C-Code Observer Concept embedded in the Virtual Verification

Platform

The VVP14 is used as a semantical basis for any kind of analysis techniques. In this

case, the behavioural description of the SUT, the environment of the SUT and the

requirements were given as C-Code within the VVP-Architecture which can be seen in

the figure further done.

C-Code as a semantical basis for test- and verification activities has a lot of advantages

in practice as C-code is a de facto standard in the development of embedded systems

in the automotive domain. Hence any given C-Code of the SUT or the Environment

Specification can be re-used in this approach.

The base technology of the existing testing environment works on self-contained C-

Code in order to automatically analyse the SUT regarding any given test- and check

property. Besides the C-Code semantical basis, the interfaces are important for any

analysis like automatic test case generation.

14

 Virtual Verification Platform („VVP“). It is needed to have a clear machine readable specification of the test
platform in which the SUT will be checked. It can be used as execution platform or/and as input for any automatic
test- and verification technologies like Model Checking Engines, Test Vector Generation engines, structural
analysis engines to find standard errors like data overflow, loop-divergence, dead-code etc.

ISO 26262 compliant verification of functional
requirements in the MBD process

- 6 -

Figure 4: Virtual Verification Platform enhanced by C-Code-Observers

The SUT with its software architecture (functions and its wiring) is given as self-

contained C-Code automatically generated by an auto code generator of the functional

or implementation model. The environment of the SUT is also given as C-Code, which

can be reused from any plant model descriptions or can be synthesized from given

environmental high-level specifications. The possibility of synthesizing environment

assumption from high level specification languages is discussed later in this paper.

The SUT corresponding requirements are represented by so-called C-Observers (C-

OBS1..n). These observers are in general small C-functions running in parallel to the

SUT during any test or analysis step in order to observe the correctness of the behavior

of the SUT in respect to the described requirements. The C-Observer Functions return

so-called valid-signals (Valid1..n), which indicate accepted behavior with a TRUE (1) or

error states with a FALSE (0). This allows automation of the test validation, if the

requirements are completely represented by such observers. The next chapter is

showing the bridge between Informal Requirements and the needed C-Observers which

are incorporated in the VVP.

4 Connecting Requirements to C-Observers

In order to bring the requirements into the VVP, a well linked information chain has to

be established (see next figure). Given an Informal Requirement specification in the

beginning, no concrete information about the final implementation or the design is

known yet. Normally an Informal Requirement is represented in natural language. This

has to be refined step-by-step along the MBD process. The refinement is performed

until a Formal Requirement Specification is available by using different methods in the

automotive industry. It depends on the specific application class and on the existing

user processes.

ISO 26262 compliant verification of functional
requirements in the MBD process

- 7 -

Figure 5: Way from Informal Specification down to C-Code-Observers

In our described testing and verification tool environment, users are leveraging from the

Pattern Specification Approach from an early specification stage on in order to perform

the manual formal specification task. This approach provides a library of predefined

patterns for specifying functional (safety- and mission critical) requirements. Patterns

can be instantiated simply by filling the pattern parameters with Boolean expressions

ranging over model elements. The pattern specification method guarantees an easy

user entry in the formal world, without having a deep mathematical and theoretical

background. This schematic pattern approach allows full certainty about what has been

formally specified, without any final doubt. If this has been done accurately, a synthesis

algorithm can generate the C-Code-Observers fully automatically and efficiently from

the Pattern Specification. Beside the three explained specification stages, a

bidirectional mapping table is managed fully automatically to ensure full traceability from

textual events to model signals down to C-Code variables. The correspondence

between model elements and code variables is provided by the modelling tool and the

auto code generator.

5 Environmental and Assumption Specification via

C-Observers/C-Drivers

A requirement in general consists of an assumption and a commitment part. A set of

assumptions shall define the needed environmental behavior of an SUT to make a

specific commitment a valid requirement specification. This is called the Virtual

Integration of the SUT in VVP.

The following formula shall describe the mathematical relationship between the set of

Assumptions (A1 … An) and the commitment C, which shall be granted by the SUT:

A1 and A2 and … and An => C

As C-Observers are used to represent the Commitment C, also the Assumptions

(A1 … An) can be represented via C-Observers. There are two different possible modes

ISO 26262 compliant verification of functional
requirements in the MBD process

- 8 -

of assumption handling in the virtual verification platform. Either the pure acceptance of

the assumptions can be observed or the strict compliance may be forced by the

environment part of the VVP.

Figure 6: Assumption Observers virtually integrated in the VVP
to evaluate valid test runs for commitment checks

The first possibility of the pure acceptance can be realized easily with pure observers

as discussed on the commitment part before.

Figure 7: Assumption Drivers virtually integrated in the VVP
with direct influence on input interface of SUT (red arrows)

ISO 26262 compliant verification of functional
requirements in the MBD process

- 9 -

The second possibility requires that the observers are converted into drivers. Those

drivers are able to change input signals of the SUT in dependency to the SUT output

behavior. In general, single assumption drivers will have an influence on only parts of

the input-interface, while the rest is driven by other assumption drivers or by free inputs

driven by test vectors. Assumption Driver signal writings on the input interface of the

SUT have priority over test vector stimuli test execution.

It is obvious, that this concept of parallel composition of assumption drivers could cause

trouble, as multiple writers can create non-determinism. This can not be resolved in

cases where assumptions are contradictory. The advantage of this simulation

(execution) based approach is, that this can be detected automatically.

The above explained second mode of assumptions generally can be used for any kind

of well-directed automatic test vector generation, in order to prevent false negatives

while evaluating the observed test runs.

Environmental C-Drivers or Assumption Observers can be synthesized from any high

level assumption specification in the same manner as C-Observers are synthesized

from any formal commitment specification.

6 Test Execution and Test Evaluation via Offline Observer-Simulation

The straight forward method of evaluating any tests with the described observer

technology simply embeds the C-Observers in the test harness (main program) of the

execution platform. In other words, the target-executable is including all C-Observers

and the needed result recording functionality. This approach generally has several

disadvantages:

• not all target platforms can be used for this approach as the execution speed

and the memory size is limited

• the integration effort of the observers in the test harnesses is very high

• even worse, the observers can not be integrated on all targets, e.g. in HiL or

real vehicle environments

In order to overcome those issues, yet another method, the so called Off-line Observer

Simulation is used. For this purpose, existing test stimuli vectors are executed on the

target-execution level (MiL, SiL, PiL, HiL15 or even in the vehicle) as it is done in the

conventional testing approach. Then the reaction of the SUT is recorded on the

selected platform in correspondence to the stimuli input vectors of the used test

scenarios. The observers are not executed directly on the execution-platform as it could

influence the systems reactions as discussed above. Afterwards the recorded test

15

 Hardware in the Loop (HiL) is a technique which allows connecting an embedded system under test (Hardware
and Software) to a simulation of the real environment of the system in order to be tested under real conditions.
The simulation of the real environment in general is done by very complex and fast Hardware (HiL-Simulator) in
order to guarantee real-time aspects during test activities.

ISO 26262 compliant verification of functional
requirements in the MBD process

- 10 -

vectors (inputs, outputs and observables16) will be replayed on a virtual execution

platform. In other word, the real evaluation of the performed tests is done off-line. This

principle is visualized with the following figure.

Figure 8: Offline Observer-Simulation

It shows that the VVP is changed. The behavior part of the SUT is replaced by a Test

Vector Replay Component. It plays back the recorded interface behavior of the SUT

which has been stored on the target execution platform. During this play-back process,

the C-Observers are running in parallel with the replay component within the VVP. This

is done in order to check if the SUTs behavior is acceptable regarding the specified

requirements indirectly through the C-observers.

In some cases, this method is limited by the level of observability of the target platform

and the used signal recorder. In most cases, this disadvantage can be prevented by a

well designed diagnostic interface of the application under development.

7 Automatic Requirements Based Test Generation

The ISO 26262 recommends (next figure) the analysis of requirements in order to find /

derive appropriate tests for the SUT. As described in a chapter above, the requirements

are represented by the introduced C-Code Observers. Therefore, C-Code-Observers

are used as basis for deriving the appropriate test cases as recommended in the ISO

26262.

:

Figure 9: ISO 26262 recommendations regarding Deriving Test Cases Part 1

16

 Observables are variables which can be read in the test harness of the SUT. According to whether the code
generator has been forced by the user to make certain signals visible (display variables) even local variables can
be recorded on the execution platform.

ISO 26262 compliant verification of functional
requirements in the MBD process

- 11 -

The VVP semantically based on C-Code consists of all needed components (SUT,

Environments and Requirements via C-Observers) to virtually represent the complete

systems behavior. This VVP is used as input for the existing test vector generation of

the testing tool environment in order to structurally cover the C-Code the observers.

This guarantees the generation of requirements based test cases as the complete VVP

is taken into account.

8 User Defined Test Cases via C-Observers

Beside requirements based test cases, other methods of deriving important tests are

recommended by the ISO 26262. It can be seen in the following figure that the further

analysis of Equivalence Classes and Boundary Values are of high interest from ASIL B

to ASIL D.

:

Figure 10: ISO 26262 recommendations regarding Deriving Test Cases Part 2

Any test cases either structural or data driven can be defined by simple branch-points of

C-Observers. This means any equivalence class definition and any data boundary

value definition can be represented as if-then-else-cascade within a C-Code-observer.

In contrast to C-Observers for requirements, these observers are not directly used as a

watch-dog which indicates desired or undesired behavior. It is used to allow the

automatic test vector generator to cover all important branches of this if-then-else-

cascade to fully satisfy the ISO 26262 recommendations regarding test case derivation.

After the test case generation process, the generated set of stimuli vectors are used to

run a simulation on the reference execution level (e.g. MiL which represents the well

tested “Golden Device”17) to get the test vectors which includes all reference test data

(inputs and recorded observables). In the final process step, these reference vectors

are used for a back-to-back test against the SUT (e.g. the final implementation on the

processor PiL).

9 Automatic Requirements Coverage Measurement

As the ISO 26262 is recommending a test quality measurement over model coverage,

code coverage and requirements coverage, an ISO 26262 compliant mechanism has to

be established within the testing tool environment via the VVP. Model- and Code-

Coverage measurement is an existing capability of the back-to-back testing use case

supported by the testing tool environment. With the extension of C-Observer technology

17

 A “Golden Device” is an ideal example of a device (such as a unit of measure) against which all later devices are
tested and judged. The term "golden" is used to describe the precision of the device to standard specifications.

ISO 26262 compliant verification of functional
requirements in the MBD process

- 12 -

for the new use case automatic requirements based testing it is possible to introduce a

new method to measure the missing Requirement Coverage in an automatic way.

All aspects of the requirements are represented within the c-observer definitions.

Therefore a complete structural coverage of those c-code-observers is measuring the

desired requirements coverage much more accurate than the intuitive approach

described in the ISO 26262. In the testing tool environment for each defined C-

Observer, the coverage rate is measured at any time of usage. An example can be

seen in the next figure.

 Figure 11: Requirement Coverage measured via C-Code-Observer Code-Coverage

Beside pure coverage, the term “Handling Rate” has been introduced to define the test-

end criteria for requirements based testing. If a specified requirement is valid under all

circumstances, the violation branches of an observer can never be covered by any test

stimuli vector. This potential violation branches can be seen in a graphical visualization

of an observer in the next figure.

Figure 12: Visualization of a C-Observer

18
 with two possible branches representing a failure situation

Therefore the structural coverage rate can never reach a hundred percent. The testing

tool environment with its verification engines can also prove19 the unattainability of

certain branches. Hence, that these dead-braches can be “handled” means they are

indeed completely analyzed by the verification technology.

18

 An observer consists of Accepting States and a single Failure State to represent wrong system behaviour during
observation. The transitions to the red failure state may be never taken, if the corresponding requirement is fulfilled
by the SUT.
19

 This capability is available for a subset class of C-Code of the SUT. The C-Code currently has to be integer or
fixed-point code, in order to be able to finally prove the absence of specific branches. In the future, maybe other
technologies will allow extending this capability even up to floating point code.

ISO 26262 compliant verification of functional
requirements in the MBD process

- 13 -

10 Conclusion

The presented extension of the existing test and verification tool environment to support

the automatic requirement-based testing in an ISO 26262 compliant way is another

huge step forward in solving the testing problems of nowadays within the existing MBD

processes in automotive.

It addresses the need for a maximum of test automation while improving the target

quality while directly fulfilling the relevant industry standards concerning functional

safety.

First experiences in pilot projects show that this seamless test and verification approach

for requirements based testing not only improves the target application quality and

saves a tremendous amount of human test effort, it additionally supports and improves

the OEM/Supplier relationship processes. As the presented observer technology can be

used along the whole V-Process, from early stages of the requirements capturing phase

to the final product implementation, it improves the communication chain between the

different development and test stages. This is especially the case within existing well

established MBD Processes, which is accompanied by a central data base including

and manageing all work products of the development process.

Future extensions of the presented observer technology go in the direction of an

automatic on-board diagnostic approach, where the C-Code-Observers are reused for

the implementation of the diagnostic components of a vehicle. So the observers finally

could be part of the implementation of the embedded system itself. This allows full

traceability between the field experiences of the final product and the other

development work products like requirements specifications and functional model etc.

This will improve the product even over the lifecycle boundaries.

