Modeling Requirements for
Quantitative Consistency Analysis and
Automatic Test Case Generation*

Tom Bienmiiller, Tino Teige, Andreas Eggers, and Matthias Stasch

BTC Embedded Systems AG, Gerhard-Stalling-Strafie 19, 26135 Oldenburg, Germany
{bienmueller, teige, eggers, stasch}@btc-es.de,
http://www.btc-es.de

Abstract. We present improvements of software development processes
based on formalized functional requirements. Fundamental basis is a
graphical formalism called simplified universal pattern allowing users to
model requirements using the intrinsic nature of functional requirements
specifying a trigger/action relation. The underlying graphical formalism
enables to generate additional benefits to existing processes. In this pa-
per we focus on two techniques: quantitative requirement consistency
analysis and automatic test case generation for functional requirements.

1 Introduction

Applying formal methods in software development processes requires formalized
temporal functional requirements being available. Even though prominent for-
malisms such as LTL or CTL [5] exist, enabling non-formal-methods-experts to
use them is still a major hurdle. Engineers need to be trained, stakeholders like
quality managers demand to understand what has been expressed, and avail-
able formal requirements need to be revised after a new iteration cycle of the
design has been initiated. Latest when it comes to real software production, non-
functional requirements such as readability, understandability, maintainability
become very important not only for the design being developed, but also for its
formal functional requirement specification. Moreover, the return on investment
for formal specifications may be doubted: does it pay off when we spend time
and money for establishing the needed skills and change our running processes?

Making formal methods applicable in production therefore means, first, to
bridge the gap between traditional requirements engineering and formalization,
and, second, to add value to existing processes which clearly overcomes return
on investment doubts.

In this paper, we address both of these key fundamentals: we describe the
graphical simplified universal pattern formalism to model functional require-
ments in a natural, intuitive, and declarative way. Then we put a focus on two
benefits: automatic requirement consistency checking and automatic test case

* This work has been supported by the ITEA3 project 14014 ASSUME.

2 Tom Bienmiiller, Tino Teige, Andreas Eggers, and Matthias Stasch

Sal_driver_up || Sal_passenger_up Sal_move_up

[0 ms,50 ms

Fig. 1. Example of a simplified universal pattern.

generation for functional requirements. We finally present initial experiments to
prove the concept of our approach which is implemented in the commercial prod-
uct suite BTC Embedded Platform®?! for specification, testing, and verification
of requirements for Simulink® and TargetLink® models as well as production
code.

2 Modeling Functional Requirements

In the past, several graphical formalization languages have been proposed. Sym-
bolic timing diagrams [10,14] or life sequence charts (LSCs) [2] are prominent
examples. Such formalisms offer tremendous expressiveness but this expressive-
ness comes along with needed expert knowledge to apply them. Approaches
like those presented in [1] (graphical pattern templates) or [3] (textual pattern
templates) limit expressiveness to gain better readability, but also benefit from
reduced complexity for tableaux generation for formal verification. Though the
latter two approaches use terms and notions to better understand the formalism,
none of them inherently bases on the nature of an informal functional require-
ment which impose another hurdle to requirement engineers.

With over 20 years of experience in the field of formal specifications we be-
lieve it is mandatory to directly relate the formalism to the intrinsic composition
of informal functional requirements. Furthermore, we believe it is important to
not overwhelm end users with exorbitant expressiveness, which will also lead
to better performance when reusing the artifacts later within formal techniques
such as formal verification or consistency analysis. Many of our customers’ func-
tional requirements for system components can be described using a simple trig-
ger/action relation, independent if they are expressing progress, ordering, or in-
variant requirements. The graphical language simplified universal pattern (SUP)
proposed in this paper follows this path of building a formalism on top of the
trigger /action relation. Note that approaches like LSCs or textual patterns could
either complement or enhance the approach described here. LSCs are well suited
to describe interactions between integrated components, while textual patterns
are charming as these are easily accessible to humans. Chronologically, SUP is a
further development from the graphical pattern templates [1] which have been
used in previous BTC-ES’ formal verification tools.

In the next subsection, we briefly recall the fundamental ingredients of that
graphical formalism. More details can be found in [13] and [12].

! Product information can be found at http://wuw.btc-es.de/ under “Products”.

Modeling Requirements for Consistency and Test Case Generation 3

Name Mode Step0 Stepl Step 2 Step3 Step4 | Step5 | Step6 | Step7 | Step8 | Stepd |Step10
Formal Requirement Status Fulfilled Violated -
Commitment SUP phase | Startup—~7(Tr) | ~Tr—T(Ad)~Act+/=T(Ti) (T | ~Tr—(Act) | w(Act) T(Act) T(Act) T(Act) @—

Sal_driver_up input 00 10 00 |00 00 00 00 00 00 00 00
Sal_passenger_up input 00 00 00 |10 00 00 00 00 00 00 00
Sal_move up autput 00 10 00 |00 00 00 00 00 00 00 00

Fig. 2. Tabular representation of an SUP run.

2.1 Simplified Universal Pattern

By long-standing experience and cooperation with engineers from prestigious
automobile and aircraft manufacturers and suppliers, description languages for
formalizing natural language requirements should be as intuitive as possible, easy
to understand, and preferably presented in a graphical way such that formaliza-
tion of human-readable to machine-readable requirements becomes a common
engineering task without being very prone to errors. The simplified universal
pattern (SUP) approach is based on the observation that the vast majority of
real-life safety-critical requirements for components can be expressed by tempo-
ral trigger/action relationships like in the textual requirement “If the driver up
or passenger up switch is pressed then the window has to start moving up in less
than 50 ms”. An SUP explicitly introduces artifacts like trigger and action to
close the gap between human intuition of a requirement and its formalized de-
scription, i.e. artifacts an requirements engineer talks about are directly reflected
in the specification formalism, as shown in Fig. 1. We remark that a trigger or an
action itself is not limited to be instantaneous but can have a temporal extent.

The semantics of an SUP is defined by runs, i.e. by (finite) executions of the
system under test which are observed by an SUP. More precisely, a trigger or
action is started by a run r at step ¢ by consuming its start event from r at
step ¢ and successfully passed at step j > i by accepting its end event at step j
within the specified time interval, while its condition must hold in between, i.e.
for all steps k with i < k < j. A trigger or action fails during processing if its
condition became false or its end event was not observed in the time interval.
An SUP is fulfilled by a run r if its trigger and action are successfully passed by
r and their temporal relation is met. An SUP is wviolated by a run r if its trigger
is successfully passed by r but the action does not start in the specified time
interval or the action fails after entering it.

For a small example, consider the SUP from Fig. 1. One possible SUP run is
shown in Fig. 2: in step 1 the expression of the trigger condition Sal_driver_up
|| Sal_passenger_up holds as Sal_driver_up is true, and thus the trigger is
passed. The SUP is then ready to observe the action which happens immediately
as Sal move_up is also true in step 1. The SUP is fulfilled and waits for a new
trigger. The next trigger is consumed in step 3 due to Sal_passenger_up. Since
the expression of the action condition Sal _move_up does not hold in the following
5 steps/50 ms (where one step corresponds to 10 ms), the SUP is violated in
step 8.

4 Tom Bienmiiller, Tino Teige, Andreas Eggers, and Matthias Stasch

Start Event End Event Start Event End Event
allb elf hiji Contion mijin

- ja&lk

Condition

a&&!b m&&n

la&8&b Im&&!n

ag&&b m&&!n

(a) Trigger Action tme
Start Event End Event Start Event End Event
alle Condition If hili Condtion i
: clid ; - j8&lk -

a&&!b m&&n

la&&b Im&&!n

a&&b m&&In

(b) V ger - Action

Start Event End Event StartEvent End Event
Condition hlli Condition In
clld - e JRBIK e

(C) Trigger Action

Start Event End Event Start Event End Event
a|lb e|lf

Condition

h“' Condition mjin
clld i

- J8&IK -

a&&!b m&&n

la&&b Im&&!n

ag&&b m&&!In

time

(d) Trigger Action

Fig. 3. Illustration of SUP coverage metrics: while ONCE (a) targets on finding one
fulfilling run, TEC (b), TCC (c), and TE/CC (d) aim at covering their corresponding
coverage goals being highlighted in blue.

2.2 Requirement Coverage

Explicitly revealing the intrinsic artifacts of an informal requirement through
a formal SUP enables to define intuitive and accurately measurable coverage
metrics for requirements. A commonly used informal coverage notion says that
“there shall be a single test case linked to a requirement which verifies it”.
Whether the linked test case is actually doing that is not obvious. It requires
a human review and confirmation. With coverage notions built on top of the
SUP formalism, the above informal coverage metrics becomes clearly defined
and measurable: executing the linked test case needs to generate a run which
completely traverses, i.e. fulfills, the SUP once, in particular successfully passes
the action end event.

Modeling Requirements for Consistency and Test Case Generation 5

Even though we are free to define arbitrary coverage notions based on SUP
artifacts, we propose to use metrics first which only refer to the trigger part of a
requirement, thus yielding the notion of trigger coverage. Coverage of the action
part is left out but could be easily added. The proposed coverage metrics differ
in the degree of exhaustion a trigger needs to be covered in order to reach the
test exit criterion. Furthermore, we first restrict the coverage to fulfilling runs
only, i.e. an SUP needs to be fulfilled by a run to induce coverage at all.

Once coverage (ONCE) intuitively corresponds to a metrics “one test for each
requirement” and is achieved if there exists a run fulfilling the SUP.

The following more sophisticated coverage notions are defined based on a
variant of multiple condition coverage (MCC). MCC is defined on all the atomic
conditions occurring in an expression to be covered plus all their possible com-
binations. As the focus for requirement coverage is on fulfilling runs only, we
restrict MCC to a subset we call satisfying MCC (sMCC), containing all com-
binations of conditions for which the overall expression evaluates to true.?

Trigger event coverage (TEC) is based on the sMCC coverage for the boolean
expressions of the trigger start and end events of an SUP, while trigger condition
coverage (TCQC) is focussed on sSMCC coverage goals of the trigger condition.
Trigger event/condition coverage (TE/CC) combines both TEC and TCC.

For a coverage metric C € {ONCE, TEC, TCC, TE/CC}, an SUP S, and a
set R of runs, we define the coverage measure C(S,R) € [0,1] C R as follows.
If C = ONCE then C(S, R) = 1 if there is a run 7 € R that fulfills the SUP S,
C(S, R) = 0 otherwise. If C # ONCE then C(S, R) = ¢/g where c is the number
of C-goals for S covered by runs in R while g is the total number of C-goals for
S. An SUP S is called fully C covered by a set S of runs iff C(S, R) = 1.

An illustration of above mentioned coverage metrics is given in Fig. 3. We
remark that an analogous definition is conceivable to establish the notion of
action coverage and moreover a combined trigger/action coverage.

3 Requirement Consistency and Test Case Generation

“Front loading” becomes more and more important. Hence, the quality of re-
quirement specifications is obviously of tremendous relevance: the higher the
quality of the requirements, the lower the probability of late iterations due to
inconsistencies and incompletenesses of these requirements and their derivate
artifacts. With formalized requirements using the SUP formalism and its con-
tained requirement artifacts we can support front loading processes by applying
dedicated requirement consistency analysis techniques on top of formalized re-
quirements. Roughly, the set of runs induced by each SUP can be brought into
relation to figure out, e.g., that requirements are contradicting. Then, the in-
tersection of runs would be empty. Additionally, as we have detailed knowledge
about each of the requirements, we even can give more quantitative information
about a common implementation of those requirements. Though there might be

2 In contrast to MCC, which induces 2" coverage goals for an expression consisting of
n atomic boolean conditions, sSMCC induces 0 < 7 < 2™ goals.

6 Tom Bienmiiller, Tino Teige, Andreas Eggers, and Matthias Stasch

runs that fulfill all requirements, parts of the requirements might be contradict-
ing. This could be made visible based on the coverage notions from Sec. 2.2.

3.1 Quantitative Requirement Consistency

In the literature, topics like requirements consistency, completeness and correct-
ness are quite rarely addressed in a formal sense. Survey papers like [4] show dif-
ferent informal but intuitive interpretations of these terms in different domains.
In context of formal specifications the term inconsistency frequently refers to
the fact that requirements are in conflict s.t. no valid system run exists, cf. [6].
The authors of [7] go some steps further and also take into account “whether
timing bounds of real-time requirements may be in conflict” leading to the no-
tion of rt-inconsistency. As requirements are often modeled by means of pre-
and post-conditions as in SUP, the term of vacuity [8] even considers conflict-
ing pre-conditions. In the following, we propose a new consistency notion called
basic SUP consistency combining the ideas of consistency and non-vacuity but
further incorporates a quantitative measure, namely by means of requirement
coverage from Sec. 2.2.

Let be given a set S = {S1,...,S5,} of SUPs. We say that some SUP S; is
basically SUP consistent for a run r wrt the remaining SUPs S\ {S;} iff S; is
fulfilled by r and the remaining SUPs S\ {S;} are not violated by r. We further
call S; basically SUP consistent for a set R of runs wrt S\ {S;}, a coverage
metric C, and a coverage threshold 0 iff S; is basically SUP consistent for each
r € Rwrt S\ {S;} and the coverage measure C(.S;, R) according to metric C for
the SUP S; wrt the set R meets the coverage threshold 6, i.e. C(S;, R) > 6. We
finally define that a set S of SUPs is basically SUP consistent wrt a coverage
metric C and a coverage threshold 0 iff for each SUP S € S there is a set R of
runs s.t. S is basically SUP consistent for R wrt S\ {S}, C, and 0.

3.2 Automatic Test Case Generation

The SUP coverage definition straight forward leads to automatic generation of
test cases for functional formal requirements. Generating a functional test from
an SUP reduces to a proof task for a model checker claiming that an SUP can
not be traversed completely while taking the coverage metric into account. If a
corresponding counter witness exists, then this run fulfills the SUP and therefore
can be viewed as a functional test for the corresponding requirement. We remark
that within BTC Embedded Platform® we rely on model checkers based on SAT,
SMT, and BDDs, cf. [11] and [9].

For this type of automatic test case creation, different interesting application
scenarios exist. These scenarios differ in the definition of the “surrounding” of
a formal requirement for which test cases shall be generated. Theoretically, we
need to have a definition of runs available which describe the behavior of the
system under test. An obvious source of runs is the system under test itself:
a test generation takes only those runs into account which are induced by its
(operational) implementation. The advantage is, that the generated test cases

Modeling Requirements for Consistency and Test Case Generation 7

will be functionally reasonable. The drawback is that test cases are generated
from the system which shall be independently tested. Another option is to specify
the “surrounding” by a set of formal requirements constraining the set of runs to
a reasonable size — giving the advantage that the approach is independent of the
system under test and can therefore be initiated in parallel to an implementation
process. Here, the drawback is, that one is required to provide a “reasonable
amount” of formal requirements in order to obtain the desired functional tests.

4 Example

The main goal of any consistency analysis is to find out early if requirements
contradict with each other and hence to avoid that no controller can be built that
satisfies them all. In the one extreme, one could look for a tool which checks if
requirements contradict each other in every situation. This is probably the easiest
analysis that can be performed, but also leads to the weakest consistency notion,
since there could still be many situations in which more subtle contradictions
exist. The other extreme is a scenario where there would be no contradiction for
all situations (i.e. for every input or parameter combination in every temporal
order). This analysis and methodology is the most costly, as it requires both
the most computation complexity but also requirement refinement effort upon
detected inconsistencies.

We therefore strive for an analysis laying between these two extremes. We
propose to analyze formalized requirements encoded as SUP by means of basic
SUP consistency from Sec. 3, which facilitates a quantitative aspect of require-
ments consistency. As a nice side effect, this approach generates functional test
cases for requirements under consideration as mentioned in Sec. 3.2. For reasons
of space, we use the following syntax for SUPs throughout this section:

trigger — action
~— A ——

5trigger 5action

with trigger being the trigger condition, dirigger the optional trigger duration,
action the action condition with its optional duration daction, and A the “local
scope”, i.e. the duration between trigger and action. A slightly extended form of
the requirement from Fig. 1 is thus written as follows:

driver_up || passengerup ~— move_up. (S1)
[0,50] MS N
50 ms

We define a second requirement that shall enforce that the window moves down
for 50 ms at most 10 ms after an obstacle is detected:

detection_obstacle =~ — move_down (S2)
[0.10]ms s
ms

8 Tom Bienmiiller, Tino Teige, Andreas Eggers, and Matthias Stasch

General | Inports Displays | Outports

4 Test case generation results [E=1 Ee =)

Test case generation results

The formal requirements were covered as follows A=

window_position:local

driver_up
passenger_up
obstacle_detection
move_up
move_down

0.048 0
0,098 0
0148 0
0
0
0

0198
0248

0 0
il 0
2 i 2 2/100% 2/100% 0/0% 2 0
3 0
4 0
5 0 0298

1
1
1
1
1
1

Fig. 4. Results of basic SUP consistency analysis and test case generation.

The goal of our tool-supported analysis is now to check basic SUP consistency
of these two requirements to prove whether a correct implementation for them
is possible or not. In order to model the environmental effects of the actuators
move_up and move_down which might reveal a potential inconsistency of the
requirements, we need to encode relevant behavior of the environment. The
window moves up when the move_up output is set to true and the end-stop
position is not yet reached:

window _position == min(0.4,

move_up && (window_position < 0.4) [10ﬂ>ms Jast (window_position) + 0.05)

where last(z) denotes the value of z at the last sample point. In our example,
the sample time is set to 10 ms. It moves down when the move_down output is
set to true while above the bottom:

window _position == max(0,

move_down && (window _position > 0) [1oﬁ>ms last(window_position) — 0.05)

It does not move at the top, bottom, or when no actuator output is set:

(‘move_up && !move_down) ||
(move_down && (window _position < 0)) ||
(move_up && (window _position > 0.4))

window_position ==
[10,10] ms last(window_position)

4.1 Automatic Consistency Analysis and Test Case Generation

We have implemented an automatic check for basic SUP consistency in combi-
nation with automatic test case generation within BTC Embedded Platform®.
In our example, we are particularly interested in basic SUP consistency of the
SUPs S1 and S2. As the triggers are instantaneous, we chose as coverage metric
C = TEC.3 The results of the automatic analysis are shown in Fig. 4: both
SUPs S1 and S2 are fully basically SUP consistent, i.e. even threshold 8 = 1.0
is met, cf. table on the left. A generated test case for S1 is depicted on the right
of Fig. 4: after having pressed passenger_up the move_up signal holds for 50 ms.

3 Note that for instantaneous triggers, the expressions of the start and end events are
equal. This implies that the derived coverage goals are the same for both events but
are nevertheless reported separately.

Modeling Requirements for Consistency and Test Case Generation 9

4.2 Towards Controller Integration

The above example showed that basic SUP consistency defines a reasonable no-
tion of requirement consistency. One obtains the information that a controller
implementation exists for an analyzed set of requirements. Complementary, func-
tional tests measurably covering requirements are automatically generated.

On the other hand, the example also shows limitations of basic SUP consis-
tency. Even though the specified requirements are proved to be basically SUP
consistent with 100% requirement coverage for the single requirements, there
could be still inconsistencies in which could lead to problems when implementing
a controller strategy for those requirements. In the above case, no controller ex-
ists which is able to handle some window-up request (driver_up or passenger_up)
together with some obstacle detection (detection_obstacle). Please note that this
type of inconsistency is an intuitive one and requires human validation —no au-
tomatism can judge whether it describes a relevant scenario, i.e. whether a con-
troller implementation needs to deal with the mentioned inconsistent cases. It
could be guaranteed by the integration of the controller that detected input in-
consistencies can not occur. Here, computed inconsistencies would be irrelevant
for a subsequent controller design and could be ignored.

It would be beneficial to have another notion of consistency available which
is able to reveal potential inconsistencies based on specific input valuations as
mentioned above. From a controller’s perspective, we want to know whether
constraints to its integration exist. To enable this, we reuse the notion of basic
SUP consistency. The only addition is to derive a dedicated SUP which combines
all triggers of the defined functional SUPs in order to express a context-free
integration of the controller to be implemented. This additional SUP is called
integrity SUP and is defined as follows:

trigger, || ... || trigger, — 1

Saction

Applying test case generation for this integrity SUP requires to check all sMCC-
combinations of all the SUP triggers of interest. If for some combination no
run exists then this shows either demands on a controller’s integration or an
unwanted inconsistency has been detected. We need to remark that the current
definition of an integrity SUP is only applicable if the triggers of the SUPs of
interest are instantaneous. Moreover, the time duration §action need by given
which currently is a manual task. In future work, we will thoroughly investigate
the notion as well as the automatic derivation of integrity SUPs.

When considering the SUPs S1 and S2 of interest. Then, we can derive the
integrity SUP S3:

(passenger_up || driver_up) || (detection_obstacle) — 1 (S3)
100 ms

The result of the automatic consistency analysis for S3 is given in Fig. 5. It
actually turned out that 6 of the 14 coverage goal are unreachable and thus

10 Tom Bienmiiller, Tino Teige, Andreas Eggers, and Matthias Stasch

= Test case generation results E=R(ECR =
Test case generation results [|
e

The formal requirements were covered s follows //\EE
Coverage metric: Trigger
Number of generated test
Detailed report

Formal Requirement New Test Cases | Coverage goals Handled Covered Unreachable
s 4 14 14/100% 8/57% 6/42%

Fig. 5. Results of basic SUP consistency analysis for integrity SUP S3.

conflicts in behavior of the requirements are revealed. Due to the fact that the
expressions of the trigger start and event event are equal (and thus their cover-
age goals), there are three conflicting situations remaining, namely exactly these
with some window-up request together with some obstacle detection, more pre-
cisely (1) passenger_up && !driver_up && detection_obstacle, (2) !passenger_up
&& driver_up && detection_obstacle, and (3) passenger_up && driver_up &&
detection_obstacle. Based on this information, one can see that the simultaneous
occurrence of passenger_up or driver_up with an obstacle detection causes situ-
ations in which no control strategy can satisfy both requirements. Based on this
information, some kind of refinement can be performed, e.g. by relaxing the first
requirement to enforce window movement only in case no obstacle is detected.

5 Conclusions and Future Work

In this paper we presented improvements of software development processes
based on formalized functional requirements. Fundamental basis is a graphi-
cal formalism called simplified universal pattern (SUP), which enables users to
model requirements using the intrinsic nature of functional requirements spec-
ifying a trigger/action relation. The underlying graphical formalism enables to
generate additional benefit to existing processes. In this paper we focused on
two methods, namely requirement consistency analysis and automatic test case
generation for functional requirements, and proved the concept of these tech-
niques by an example. In particular, when it comes to consistency analysis we
motivated the necessity of introducing quantitative measures for being able to
rate also controller integration demands.

In the current status of the technology we see several extension links in the
future. Besides equipping consistency analyses with appropriate debugging facil-
ities, we think about adding further quantitative measurements such as amount
of runs fulfilling an SUP. We also need to consider completeness analyses of
requirements, giving evidence whether “enough” requirements have been speci-
fied. By working closely together with industrial users we will collect the required
feedback and needs and will let the tool evolve with respect to these needs.

Modeling Requirements for Consistency and Test Case Generation 11

Acknowledgments

The authors are very grateful to the anonymous reviewers for their helpful com-
ments to improve the quality of the paper.

References

10.

11.

12.

13.

14.

Bienmiiller, T., Damm, W., Wittke, H.: The STATEMATE verification environ-
ment - making it real. In: CAV. LNCS, vol. 1855, pp. 561-567. Springer (2000)
Damm, W., Harel, D.: LSCs: Breathing life into message sequence charts. FMSD
19(1), 45-80 (2001)

Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: ICSE. pp. 411-420. ACM (1999)

Kamalrudin, M., Sidek, S.: A review on software requirements validation and con-
sistency management. IJSEIA 9, 39-58 (2015)

van Leeuwen, J. (ed.): Handbook of Theoretical Computer Science (Vol. B): Formal
Models and Semantics. MIT Press, Cambridge, MA, USA (1990)

Post, A., Hoenicke, J.: Formalization and analysis of real-time requirements: A
feasibility study at BOSCH. In: Verified Software: Theories, Tools, Experiments.
LNCS, vol. 7152, pp. 225-240. Springer (2012)

Post, A., Hoenicke, J., Podelski, A.: rt-inconsistency: A new property for real-time
requirements. In: Fundamental Approaches to Software Engineering. LNCS, vol.
6603, pp. 34-49. Springer (2011)

Post, A., Hoenicke, J., Podelski, A.: Vacuous real-time requirements. In: Interna-
tional Requirements Engineering Conference. pp. 153-162. IEEE (2011)
Scheibler, K., Neubauer, F., Mahdi, A., Franzle, M., Teige, T., Bienmiiller, T.,
Fehrer, D., Becker, B.: Accurate ICP-based floating-point reasoning. In: Formal
Methods in Computer-Aided Design (2016)

Schlor, R., Damm, W.: Specification and verification of system-level hardware de-
signs using timing diagrams. In: European Conference on Design Automation. pp.
518-524. IEEE (1993)

Schrammel, P.; Kroening, D., Brain, M., Martins, R., Teige, T., Bienmiiller, T.:
Successful use of incremental BMC in the automotive industry. In: Formal Methods
for Industrial Critical Systems. LNCS, vol. 9128, pp. 62—-77. Springer (2015)
Stasch, M.: Universal Pattern: Ein neuartiger Ansatz zur Visualisierung formaler
Anforderungen. Master’s thesis, University of Oldenburg (2014), in German
Teige, T., Bienmiiller, T., Holberg, H.J.: Universal pattern: Formalization, testing,
coverage, verification, and test case generation for safety-critical requirements. In:
MBMYV. pp. 6-9 (2016)

Wittke, H.: An environment for compositional specification verification of complex
embedded systems. Ph.D. thesis, University of Oldenburg (2005)

