
-

Significant Quality and Performance Gains through
Fully Automated Back-to-Back Testing

Hans J. Holberg
SVP Marketing & Sales, BTC Embedded Systems AG

Buschstr. 1, 26127 Oldenburg, Germany
holberg@btc-es.de

Dr. Udo Brockmeyer
CEO, BTC Embedded Systems AG

Buschstr. 1, 26127 Oldenburg, Germany
brockmeyer@btc-es.de

Abstract: In the meantime it is generally accepted that model driven

development is the premise to deliver more embedded functionality in

shorter time, in other words with less cost. An additional significant

benefit of applying model driven methods for developing embedded

software is higher quality of the developed software due to early

verification means like model in the loop (MiL1) simulation. However,

testing of the embedded software is usually still done in a more traditional

way, using processes and methods adequate for the software

development processes of the 80s and 90s. In fact, there is indeed a

significant gap between the high level of productivity of the software

engineers, using models to develop the software, and the lower level of

productivity of the engineers responsible to perform the testing and

quality assurance. An alarming effect is that the quality of the embedded

software products decreases, in particular since time-to-market

constrains do not relax. In this article we show how to complement model

driven development with a model based back-to-back testing approach,

and how this leads to significantly improved quality and testing efficiency.

The complete model based software verification approach is explained in

the context of model driven development using Matlab, Simulink and

TargetLink. This approach seamlessly integrates MiL, SiL2, and PiL3

testing activities, thereby automating many of the ordinary testing

activities. Even more, it shows how the development of the necessary

test vectors is highly automated such that the complete verification of the

embedded software can be done in much less time than today.

1 MiL: Model in the Loop. Normally it is a closed-loop system model which consists of the control component plus plant

(environmental) model. Here, an open-loop with an automatically generated test harness is used to automatically test the SUT

(System under Test).
2 SiL: Software in the Loop. In contrast to PiL, the real target hardware is replaced by the used host-computer and its ordinary

processor. The developed model of the software is only translated into target hardware compatible code. The plant model is

replaced by a test driver (automatically generated test harness).
3 PiL: Processor in the Loop. In contrast to SiL real target hardware (evaluation board) is used to load the application on it for

testing. This allows identifying compiler- and processor issues.

Significant Quality and Performance Gains through
Fully Automated Back-to-Back Testing

 - 2 -

1 Field of Application

The described method is based upon an automatic code generation environment4 and it

is seamlessly embedded into a complete development environment for Embedded

Software. The automatic test and verification environment5 is supporting the whole

modelling block-set of the automatic code generator. Additionally it is supporting

external legacy code which comes from other code generation and even hand written

code sources. The currently available solution is supporting any hierarchically

developed fixed point and floating point application, such that an extremely high model

and code coverage level can be reached by a fully automated approach. This has been

successfully proven in series production in the automotive domain during the last 5

years in Germany and Japan.

2 Quality Aspects

As the described method is currently mainly used in the automotive domain, quality

aspects can be assessed by using relevant safety standards. Here it is of interest to

have a look at the ISO 26262 upcoming standard, which is an adaptation and extension

of the currently functional safety standard IEC 61508 especially for functional safety in

automotive. The final release of this international standard is planed for 2011 and it is

available as a Draft International Standard (“DIS”) since mid of 2009. In contrast to the

IEC 61508 the ISO 26262 is taking the model-based development process into account.

Thus, model-based testing and back-to-back testing between the different

development-stages is becoming state-of-the art. ISO 26262 is defining 4 different

levels of safety, so called Automotive Safety Integrity Levels (ASIL A, ASIL B, ASIL C

and ASIL D). Level A is the lowest and D the highest safety level. For all levels, “Back-

to-back tests between Model and Code” are recommended and for level C and D even

highly recommended. The quality of the back-to-back tests is determined by using so

called coverage criteria. Especially the criteria statement coverage6, branch coverage7

and MC/DC coverage8 are required for the different ASIL levels.

3 Efficiency Aspects

As back-to-back testing on the quality side is state-of-the-art, the next very important

question is development and testing efficiency. The different coverage criteria of the

specific relevant ASIL Levels are introducing huge additional effort regarding the testing

activities of the process. In order to handle this testing complexity automatic

approaches are definitely needed to overcome this challenge.

4 Here: Matlab Simulink/Stateflow (TheMathworks) in combination with the leading automotive code generator TargetLink

(dSPACE GmbH) has been used in real serial production projects as standard modelling and code generation environment.
5 Here: EmbeddedTester from BTC Embedded Systems AG is used. It became a standard test and verification environment for

TargetLink users in the automotive domain.
6 Statement Coverage: Every code statement has been executed during testing at least once
7 Branch Coverage: Every branch point (decision value) FALSE and TRUE has been taken during testing
8 Modified Condition Decision Coverage (MC/DC): A set of test vectors, which make every decision TRUE and False while

each single condition of that decisions has an independent influence on the value of that decision. A 100% MC/DC coverage

guarantees the detection of any failure within a decision of the mode or model.

Significant Quality and Performance Gains through
Fully Automated Back-to-Back Testing

 - 3 -

The first kind of effort complexity is the test creation phase. A method to automate test

vector generation to fulfil model and code coverage can tackle this problem. Another

kind of problem is to efficiently execute and analyze the huge number of tests. A

complete automatic solution is definitely needed in order to prevent from too many

manual tasks regarding the testing workflow, and to prevent test errors while performing

manual testing. Finally the quality metrics (coverage statistics) needs to be determined

from automatically generated test reports. All these arrangements to automate testing

can only be efficient, if the techniques are highly integrated within the development and

test environments of the software generation tools. This fully automated and integrated

solution will be shown in the following sections of this paper.

4 The Reference Work Flow

A reference work flow has been developed in order to define the relationship of model-

based development and model-based testing, which shows the paradigm-shift from

manual testing on the code implementation level to model-based testing combined with

automatic back-to-back testing between model and code levels. In contrast to the

traditional development and test process, the new approach focuses the main

development and test tasks on the model level and guarantees the correct behaviour

transformation by auto code generation in combination with automated structural back-

to-back testing. It is widely accepted that testing and debugging on the model level is

much easier and cheaper, which makes this approach so attractive. The following figure

shows roughly the above explained reference work flow.

Figure 1: Reference Work Flow9

Based on given informal or/and formal requirement specifications executable models

can be developed by modelling under certain modelling guide lines. This enables

9 Published in 2010 by M. Beine (dSPACE GmbH, Paderborn) and Dr. T. Bienmüller (BTC Embedded Systems AG,

Oldenburg) under the title: “Addendum to the TargetLink Reference Workflow - Overview and Variations”

Significant Quality and Performance Gains through
Fully Automated Back-to-Back Testing

 - 4 -

model-based testing by using model simulators and even formal verification by using

model checkers. The model-based testing is done under well defined quality gates

mainly defined by industrial safety standards like the ISO/DIS 26262. If this quality gate

is passed, automatic code generation can be used to switch from model level to

implementation level. This step(s) have to be verified by using the approach of

automatic back-to-back testing, which consists of automatic test generation, automatic

test execution including automatic test assessment. The details of this process will be

described in the following sections.

5 The Model Based Software Verification Approach

The development and test processes in several industrial domains like automotive and

aerospace became more and more model-based. The reason for this trend is obvious

as early executable specifications of complete vehicle functions of systems, even

including mechatronical components and its network, allows a more efficient

development and testing, since not all complex software and hardware design decisions

have to be taken upfront. Functions can be developed independent of the final targets,

which have a lot of benefits, like IP-Protection, reusability, and better OEM-Supplier-

Interfaces. With this approach, the design can be validated very early. Also any single

function can be verified against its given requirements. This assures that the whole

control system under development is fulfilling the desired system specifications. The

usage of automatic code generators for modelling environments tremendously

decreases the effort of the implementation phase, but the test effort is still high on the

implementation side even if using auto code generation. On the other hand, testing can

be lifted-up to the model level by introducing automatic code verification capabilities.

The idea of Automatic Code Verification is based on an existing hierarchical model

which acts as a behavioural reference (aka “golden device” or “reference model”) for

further automatic structural testing on the corresponding code implementation. Basic

element of such a testing method is automatic test generation, -execution, -analysis and

any kind of reachability analysis. The test generation and the reachability analyses of

the Code Verification Environment are performed on the target code itself, which has

been generated automatically by the auto code generator. In the first analysis phase all

necessary test cases will be generated automatically. Additionally these test cases will

be reported to the user within a hyper-linked report, including detailed test information.

This report is used as a test center to drive any test activities during the testing process.

Beside coverage criteria like condition coverage, decision coverage, CDC10 and

MC/DC-Coverage, also implementation related failure sources like scaling, division-by-

zero, saturation and type castings will be taken into account. The intention is an

automatic structural comparison with dynamical tests and analyses between the model

level(s) which represents the reference level and the implementation level(s) (SiL, PiL

and if applicable even HiL11).

10 CDC: Condition Decision Coverage
11 Hardware in the Loop (HiL): A test method where an embedded system is connected to a HiL-Simulator equipment, which

emulates the real environment of the system under test under even real time conditions.

Significant Quality and Performance Gains through
Fully Automated Back-to-Back Testing

 - 5 -

6 Automatic Test Generation and Code-Verification

The automatic test environment is able to find any input stimuli sequence to cover

certain coverage criteria. The presented technology is using the automatically

generated c-code, in order to represent the software behaviour for further test case

generation and code verification analysis. Besides test sequence generation, also

unreachable code branches can be identified until an arbitrarily defined analysis depth.

Those capabilities are available, because specific algorithms from the area of Formal

Methods, which have been used successfully over more than 15 years, are taken into

account.

Figure 2: Code Verification Concept

The figure above shows the left side of the V-Process, from target independent

Functional Models, via target related Implementation Models to C-Code, and finally the

related compiled Object Code running on an evaluation target. Background of the

analysis of the verification environment is the c-code.

The automatic test vector generation (“ATG”) capabilities of the verification environment

is directly using the target c-code to find the right set of input stimuli in order to

exhaustively cover code and reference model. Different coverage criteria are measured

during test vector generation to maximize the specific desired coverage rates.

The generated or/and imported stimuli vectors are stored within an internal data bank.

These vectors are used for execution (ATE) on the different development levels

Significant Quality and Performance Gains through
Fully Automated Back-to-Back Testing

 - 6 -

(Functional Model, Implementation Model, Code and Object Code Levels) to get the

needed comparison reference data. The recorded observable variables12 will finally be

compared automatically by using a data stream comparison algorithm. Not acceptable

differences are reported by the verification environment, hereby taking user defined

tolerances of the specific signals into account.

Due to the tight tool integration of the test and verification environment together with the

automatic code generator by using the hierarchical test approach, scalability even up to

extremely large industrial applications can be guaranteed.

The following code coverage criteria are currently supported:

• Statement Coverage,

• Condition Coverage

• Decision Coverage

• Switch-Case-Coverage

• Function-Call-Coverage

• Condition Decision Coverage (“CDC”)

• Modified Condition / Decision Coverage („MC/DC“)

Test cases which are important to check implementation related aspects are the

following:

• Division by-Zero,

• Type Range Violations (Over- and Underflows)

• Type-Casting

• Saturation and

• Relational Operations (Fixed-Point vs. Floating-Point),

If the test vector generation algorithms can not completely cover code and model, the

verification environment applies formal method techniques to assess the reachability of

the missing coverage properties. In contrast to other methods, a so called handling rate

is introduced by this method. Best practice has shown that a 100% handling rate

provides a better metrics than a 100% coverage rate, as 100% coverage under normal

conditions never can be reached, for instance, due to safety code around divisions. This

shows that a reachability analysis becomes an important element of this testing and

verification approach.

12 Generally, the verification environment distinguishes between outputs of the “System Under Test” (SUT) and the observable

internal signals, which can be used for testing purposes. If the user in only interested in output signals of the SUT, it is called

“Black Box Testing”. If internal signals are needed for diagnosis the “Grey Box Testing” mode is used.

Significant Quality and Performance Gains through
Fully Automated Back-to-Back Testing

 - 7 -

7 Automatic Test Execution

Due to the consequent hierarchical approach, which guarantees scalability over the

industrial sized applications, the automatically generated stimuli sequences can be

executed on the different execution levels of the corresponding hierarchy entity

(interface) for recording the behavioural reactions of the particular function/system. The

needed test harness generation is generated fully automatically by the verification

environment without any user intervention and effort. It also guarantees that the system

under test (target code) is not touched or modified while testing. This approach

completes the auto-generated stimuli-vectors into real test vectors consisting of input

sequences and its calculated corresponding output (observable) expectation values.

8 Automatic Test Evaluation

In back-to-back testing mode, the verification environment fully automatically compares

the executed test cases, including reference (output) values, on all levels (MiL, SiL and

PiL), and shows the differences in automatically generated reports. Tolerances can also

be defined to fine-tune the automatic comparison of data streams. Fixed-point versus

floating-point aspects are in particular addressed during automatic test evaluation.

Figure 3: Test Evaluation Report

The figure above shows a test evaluation report which summarizes all test results. It

indicates if tests yielded not expected values regarding the user defined tolerance

range. This report is also hyper-linked to the test manger straight pointing to the

relevant test vectors to enable highly automated and efficient debugging.

Significant Quality and Performance Gains through
Fully Automated Back-to-Back Testing

 - 8 -

9 Debugging Support

If differences between the execution levels are discovered, finding/fixing the source of

an error becomes an issue. The code verification environment supports users with

linked coverage reports and dedicated debugging facilities. Automatically generated

hyper-linked reports show differences between target code and the corresponding

reference model(s), if a user-defined deviation/tolerance is violated. With a single

mouse click, the user is able to jump to the corresponding, relevant code or/and model

part in order to analyze the reason for unacceptable differences. This advantage can be

achieved only by a close integration of the modelling, code generation and verification

environment. Finally, test vectors can be debugged step-by-step on MiL and SiL levels

(automatic export of e.g. Visual C-Debugging-Project). This integration significantly

decreases debugging setup and execution efforts.

10 Open Import- and Export Interfaces

The Code Verification Environment supports importing and exporting test vectors into

and from numerous file formats, such as XML, MAT, XLS, CSV, CTE and others. It

enables to easily use new and existing test sets from various sources. After importing

test cases, the verification environment shows their achieved code coverage ratio. Test

cases can also be reused, which have been automatically generated by requirements

based test and verification environment such as model checkers etc. Furthermore, test

vectors can also be defined interactively by the user on the basis of requirements by

using an integrated or plugged-in test authoring system. All managed test cases also

can be exported to be reused in subsequent testing stages, such as in HiL-Testing-

Environments.

11 Practical Experiences

Experiences from the field of customers demonstrated that the presented automatic

back-to-back testing method enhanced with automatic test vector generation saves 80-

90% of the test creation, execution and analysis efforts compared to conventional

manual approaches.

Additionally it proved that the achieved quality level can be significantly improved as

demanded by the upcoming ISO DIS 26262 standard. In particular it is very helpful in

this process to measure “achieved test quality” by using well-known coverage criteria

such as Branch coverage or MC/DC coverage. Coverage rates can easily be increased

by more than 25% by using automatic methods.

Another very important advantage of this highly integrated technology is the almost fully

automated debugging support. First user feedbacks have shown a time saving of at

least 50% compared with a fully manual approach.

Significant Quality and Performance Gains through
Fully Automated Back-to-Back Testing

 - 9 -

12 Conclusion

The presented model based back-to-back testing approach is a quantum jump in the

direction of more efficient testing, since the total testing effort can be tremendously

minimized, while the quality of the product under development can be significantly

increased. This has been proven during the last 4 years in serial production in the

automotive industry.

The key for an efficient use of this fully automatic model based software verification and

testing approach is a close, hand-in-hand integration with high efficient and de-facto

standard tools for automatic code-generation in tight connection with the real

implementation level and the modelling environment, all this of course fully embedded

in the model-based development process.

Due to the re-use of formal methods technology on the code-level, providing answers to

the “issues of completeness”, any desired quality level, mainly derived from industrial

standards like ISO 26262, IEC 61508 or DO-178b, can be reached without over-

proportional manual test effort. A mandatory key element is the tight combination of the

test execution with coverage measurement technology in order to achieve the “testing

quality” at any point in time during development and testing.

